
 

185 
 

Chapter 5:  Historical timeline 

Historical timeline   
 

Scenario 

A history society wishes to set up an on-line application to create historical timelines for display on the 
internet.  Example themes may be: the history of a particular city or region, or the historical development 
of a particular technology such as 'Domestic Housing in Britain'.  A timeline should scroll to show an 
extended number of years, divided into periods such as 'the Victorian Era' or 'the post-War years'.  Symbols 
on the timeline will link to information panels for events occurring in particular years.  

Registered users should have a facility to add information about historical events.   The uploaded entries 
are to be approved by staff before display on the publicly available timeline web page. Staff may also create 
timelines on new themes and add these to the web site. 

It will be possible to specify themes which cut across time periods.  These themes will be listed in a key, and 
appear on the timeline by different sysmbols.  For example, in a History of Transport timeline we might 
choose the themes: Road, Sea, Rail, and Air as different forms of transport.  

 

 

 

 

 

 

  

 

 

 

 

If the mouse is clicked on a symbol displayed on the timeline, an information panel will be opened. 

  

5 



 

186 
 

Web-based programming projects 

Design 

The objectives of the project can be summarised in a use case diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three types of actor will interact with the website: 

Public users will go to the site to view the historical timelines.  They may select information on events of 

interest, or may choose timelines from the set available. 

Registered members may view the timelines, and may additionally add historical events.  Text and a picture 

image will be required for each event. 

Staff of the historical society have an overview of the website.  Staff will approve articles submitted by 

members before they are displayed on the timeline.  Staff may also create new timelines by setting the 

start and finish years, and dividing the timeline into a series of historical periods. The website will provide 

graphics tools to produce background images for the historical periods. 

The operation of the website will be centred around a series of database tables.   



 

187 
 

Chapter 5:  Historical timeline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The timeline table contains the title and year range for each timeline. 

The timelinePeriod table defines the sequence of historical periods within the timeline, recording the start 

and finish dates and the background image to be displayed.  The yearPixels value determines the horizontal 

year scale to be used when displaying the period.  

The event table records historical events which are linked to particular years, and includes text and the file 

names of images for display. 

The eventCategory table records the classifications used for events within a particular timeline.  Different 

symbols will then identify events within the specified categories, such as events related to politics or 

industry. 

Links between the web page functions and the database tables are illustrated in the flowchart shown on 

the next page. 

 

Programming techniques 

The web site will be created using a mixture of PHP, Javascript and p5.js programming languages.  Text 
content for the site will be stored in an SQL database, then used to create objects in PHP for access by the 
web pages.  Scrolling and interactive graphics will be created with the Javascript-based p5.js graphics 
language, with native Javascript code forming links between PHP and the screen graphics display.   

 

Method 

We will begin by producing a log-in system to allow access to the website functions for members and staff 
of the society.  A historical timeline will then be created and tested.  Programming will follow the sequence 
outlined in the flowchart above:  a new timeline will be defined; historical periods will be set up, including 
the creation of background images; then information about historical events will be added.  



 

188 
 

Web-based programming projects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A password protected log-in system is needed for both staff and members of the historical society.  It is 
simplest to use a single database table to hold all usernames and passwords, and to include a field which 
identifies the user's status as 'staff' or 'member'.  E-mail addresses will also be held in the table, to allow 
easy communication between staff and members.  

Go to the PHP MyAdmin website for the database and select the option to add a new table.  Create a table 
with the name timelineLogin and add the fields shown below.  The integer loginID field should be specified 
as the primary key, and set to auto-increment as records are added.  Other fields are of the data type 
varchar with the sizes shown below.  The procedure for setting up a MySQL database table was described 
in more detail previously in Chapter 2: Hardware Store. 

 



 

189 
 

Chapter 5:  Historical timeline 

 

 

 

 

 

 

 

 

Add several records to the timelineLogin table.  Include both 'staff' and 'member' entries in the status field. 

 

 

 

 

Set up folders with the name 'timeline' on the local computer and on the server to hold the project files.  
We will now create a log-in page for the web site.  Open a blank file and add the lines of program code 
shown in the two boxes below.   

       

       <? 

   session_start(); 

   $_SESSION['login']="";   

?> 

<html> 

 <head> 

  <title>Historical timeline</title> 

  <style> 

    body{ 

  font-family: arial, sans-serif; 

    } 

   </style> 

 </head> 

 <body> 

   <form action="index.php" method="post"> 

   <table cellpadding=20> 

     <tr> 

     <td>  

      <img src="loginImage.jpg"> 

 <h3>Log-in</h3> 

 <table border="0" cellpadding="10"> 

 <tr> 

 <td>User name </td> 

 <td> 

 <? echo "<input type=text size=30 name=user >"; ?> 

 </td> 

 </tr> 

 



 

190 
 

Web-based programming projects 

  

       <tr> 

 <td>Password</td> 

 <td> 

 <? echo "<input type=password size=30 name=pass >"; ?> 

 </td> 

 </tr> 

 <tr> 

 <td></td> 

 <td><input type=submit value="Enter"></td> 

 </tr> 

  </table> 

      </td> 

     </tr> 

  </table> 

  </form> 

</body> 

</html> 

 

     

Save the file as login.php and copy it to the server.  Obtain a suitable illustration, save this with the name 

loginImage.jpg and also copy it to the server.   

Run the website, specifying the filename login.php at the end of the timeline URL.  Check that input boxes 

are displayed for the user name and password, along with the picture illustration and an 'Enter' button. 

 We will extend the log-in page to provide a form for new members to register.  The overall page structure 

is constructed from nested tables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<table> 

<table> <table> 

</table> 

</table> </table

> 



 

191 
 

Chapter 5:  Historical timeline 

Re-open the login.php file and add the program code shown below.  This creates input boxes which allow a 

new user to input their personal details and select a user name and password.  

Save the completed file and copy it to the server.  Run the website log-in page and check that data entry 

boxes are displayed correctly.   

 <td><input type=submit value="Enter"></td> 

 </tr> 

  </table> 

      </td> 

 

  </form> 

  <form method='post' action="addMember.php"> 

      <td width =200> 

  </td> 

  <td> 

    <table cellpadding=5> 

    <tr><td colspan=2> 

   <h3>Register as a new user</h3></td></tr> 

    <tr><td>Forename 

   <td><input type=text name='forename'></td></tr>  

    <tr><td>Surname</td> 

   <td><input type=text name='surname'></td></tr>  

    <tr><td>e-mail</td> 

   <td><input type=text name='email'></td></tr>  

    <tr><td><br>Please select: </td></tr> 

    <tr><td>User name</td> 

   <td><input type=text name='user'></td></tr>  

    <tr><td>Password</td> 

   <td><input type=password name='pass'></td></tr>  

    <tr><td></td><td><input type=submit value='Enter'> 

               </td></tr> 

    </table> 

  </td></tr>  

 </table></td> 

       

      </tr> 

     </table>    

   </form>  

 </body> 

</html> 

 

Registration data entered by a new user must be saved to the timelineLogin table in the database.  To do 

this we will first create a TimelineLogin object class.  All transfers of data between the website and the SQL 

database will be handled by separate object classes.  This strategy has the advantages of: simplifying the 

testing of database functions; reducing the complexity of the program code which remains in the web page 

files; and producing object classes which can be re-used in different projects. 

Open a blank file and add the lines of program code shown below.  Save the file as TimelineLogin.php and 

copy it to the server.  The class file begins by defining the fields for a TimelineLogin object, corresponding to 

the fields of the database table.  A constructor method is then provided to create objects, and a method 

addMember( ) allows records to be saved to the database. 

  



 

192 
 

Web-based programming projects 

 

<? 

class TimelineLogin 

{      

    public static $timelineUser=array();     

    public static $userCount; 

    private $loginID; 

    private $forename; 

    private $surname; 

    private $email; 

    private $user; 

    private $pass; 

    private $status; 

 

    function __construct($loginID,$forename,$surname,$email,$user,$pass,$status) 

    { 

  $this->loginID = $loginID; 

  $this->forename = $forename; 

  $this->surname = $surname; 

  $this->email = $email;  

  $this->user = $user; 

  $this->pass = $pass;  

  $this->status = $status;  

    } 

 

  public static function addMember($forename,$surname,$email,$user,$pass) 

  { 

       include('user.inc'); 

 $conn = new mysqli(localhost, $username, $password, $database); 

       if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }  

 $query="INSERT INTO timelineLogin VALUES ('','$forename',  

                          '$surname','$email','$user','$pass','member')"; 

 $result=mysqli_query($conn, $query); 

       mysqli_close($conn);  

   } 

} 

?> 

 
 

Before running the staff log-in system, a security file will be needed to authorise access to the on-line 
database.  This has the format:  

    <? 
$username="YOUR USER NAME"; 
$password="YOUR PASSWORD"; 
$database="YOUR DATABASE NAME"; 

    ?> 

 

Create a blank text file and copy the lines above. Replace "YOUR USER NAME" and "YOUR PASSWORD" with 
the username and password which give you access to the PHP MyAdmin website.  The entry for "YOUR 
DATABASE NAME" is normally the same as the username entered on the first line.  Save the small file as 
user.inc and copy it to the server.  

We will now create the page which will be loaded when a new member enters their personal details on the 
log-in screen and clicks the 'Enter' button.   Open a blank file and add the lines of program code below.  The 



 

193 
 

Chapter 5:  Historical timeline 

program collects the data values from the input boxes, then calls the addMember( ) method in the class file 
which will upload the record to the database table. 

 

<? 

   session_start(); 

?> 

<html> 

 <head> 

  <title> Historical timeline </title>   

</head> 

<body>   

<? 

   $forename=$_REQUEST['forename']; 

   $surname=$_REQUEST['surname']; 

   $email=$_REQUEST['email']; 

   $user=$_REQUEST['user']; 

   $pass=$_REQUEST['pass'];         

   include('TimelineLogin.php'); 

   TimelineLogin::addMember($forename,$surname,$email,$user,$pass); 

   $_SESSION['login']="member";   

   header('Location: index.php'); 

?> 

</body> 

</html> 

 

 

Save the file as addMember.php and copy it to the server.  Open a blank file, add the program code below, 
save it as index.php and copy the file to the server. 

 
<? 

   session_start(); 

   $login = $_SESSION['login'];    

   if ($login =='member') 

      echo"<p>logged in as a member"; 

?> 

 

 

We are now ready to test the system for registering new members.  Run the website log-in page, enter full 

details for a new member, then click the 'Enter' button.  The page index.php should load, and display a 

message indicating that the user is now logged-in as a member. 

 

 

 

 

 

Go the the PHP MyAdmin website and open the timelineLogin table.  The new record should be present, 
with the status field set to 'member'. 

We will now develop the login function for existing staff and members.  Open the TimelineLogin.php class 
file and add the loadTimelineUsers( ) method shown below.  This accesses the database table and obtains 
all timeline login records.  These are then converted to objects which are identified as $timelineUser[1], 
$timelineUser[2], etc. 
  



 

194 
 

Web-based programming projects 

         
     public static function loadTimelineUsers() 

     { 

  include ('user.inc'); 

  $conn = new mysqli(localhost, $username, $password, $database); 

        if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 

  $query="SELECT * FROM timelineLogin"; 

  $result=mysqli_query($conn, $query); 

        $num=mysqli_num_rows($result);    

        mysqli_close($conn);  

  $i=1; 

  while ($i <= $num)  

  { 

           $row=mysqli_fetch_assoc($result); 

           $loginID=$row["loginID"]; 

     $forename=$row["forename"]; 

     $surname=$row["surname"]; 

     $email=$row["email"]; 

     $user=$row["userName"]; 

     $pass=$row["password"]; 

     $status=$row["status"]; 

     TimelineLogin::$timelineUser[$i] = new TimelineLogin 

                ($loginID,$forename,$surname,$email,$user,$pass,$status); 

     $i++; 

   } 

   TimelineLogin::$userCount=$num;   

 } 

   } 

   ?> 

 

Add two further methods to the TimelineLogin.php class file.  These check each of the objects for a valid 

user name and password.  If found, the status as 'staff' or 'member' is returned. 
 

     

    private function checkUser($userWanted,$passWanted) 

    { 

        if (($userWanted==$this->user)&&($passWanted==$this->pass)) 

     return $this->status; 

  else 

     return "";     

     }  

 

     public static function checkPassword($userWanted,$passWanted) 

     { 

   $found=""; 

   for ($i=1;$i<=TimelineLogin::$userCount;$i++) 

   { 

      $answer= TimelineLogin::$timelineUser[$i]->checkUser    

                                            ($userWanted,$passWanted); 

      if (strlen($answer)>1) 

    $found=$answer;      

   } 

   return $found;  

     } 

  } 

  ?> 



 

195 
 

Chapter 5:  Historical timeline 

Save the TimelineLogin.php file and copy it to the server.  Re-open the index.php file.  Add lines of program 
code to call the password checking method and obtain the member or staff status of the user.  This is then 
stored as a session variable for later use. 

        <? 
   session_start(); 

   $login = $_SESSION['login'];  

   if ($login =='') 

   {  

       include('TimelineLogin.php');  

 $user=$_REQUEST['user']; 

 $pass=$_REQUEST['pass']; 

 TimelineLogin::loadTimelineUsers();    

       $login=TimelineLogin::checkPassword($user,$pass); 

       $_SESSION['login']=$login; 

       $_SESSION['user']=$user;  

   } 

   if ($login =='member') 

    echo"<p>logged in as a member"; 

 

Add an additional test message to identify staff users. 
 

if ($login =='member') 

    echo"<p>logged in as a member"; 

 

   else if ($login =='staff') 

    echo"<p>logged in as staff"; 

   else 

       echo"<p>no login";  

 

?> 

Save the index.php file and copy it to the server.   

Run the website log-in page and carry out tests with member and staff user names and passwords.  In each 
case, a corresponding log-in message should be displayed when the 'Enter' button is clicked.  If an incorrect 
user name or password is entered, then 'no login' should be shown. 

This index.php page will display the historical timeline when the program is completed.  We will replace the 
log-in test messages with a menu bar at the top of the screen.  In preparation for this, create a style sheet.  
Open a blank file and add the formatting commands shown below.  

body, table { 

  font-family: arial, sans-serif; 

  font-size: 14px;} 

table.outline, th.outline, td.outline { 

  border-collapse: collapse;  border: 1px solid gray;} 

table.menu {  

  font-family: arial, sans-serif; 

  border-collapse: collapse;  width: 100%;} 

th.menu  {   

  text-align: left;  padding: 8px; 

  background-color: rgb(180, 180, 180);  color: white;} 

a:link, a:visited {  

  color: white; font-size: 14px; 

  text-decoration: none;} 



 

196 
 

Web-based programming projects 

Save the file as styleSheet.css and copy it to the server.  

Re-open the index.php file.  Remove the IF..ELSE..ELSE block, then add program code to create menus. 

    

       include('TimelineLogin.php');  

 $user=$_REQUEST['user']; 

 $pass=$_REQUEST['pass']; 

 TimelineLogin::loadTimelineUsers();    

       $login=TimelineLogin::checkPassword($user,$pass); 

       $_SESSION['login']=$login; 

       $_SESSION['user']=$user;   

   }  

?> 

<html> 
 <head> 
  <title> Historical timeline </title> 
    <link rel="Stylesheet" type="text/css" href="styleSheet.css" />   
 </head> 
 <body> 
 <?  
    echo"<table class=menu>";  
    echo"<tr><th class=menu></th>"; 
    echo"<th class=menu>"; 
    if ($login=='member') 
    { 
 echo"<a href='memberArticles.php'>"; 
 echo"MEMBER PAGE </a></th>";   
    } 
    else if ($login=='staff') 
    { 
       echo"<a href='createTimeline.php'>"; 
 echo"STAFF PAGE </a></th>"; 
    } 
    else 
    { 
 echo"<a href='login.php'>"; 
 echo"LOG-IN </a></th>"; 
    } 
    echo"</tr>";   
?> 
</table> 
</body> 
</html> 
 

 

Save index.php and copy it to the server.  Run the website and again test the log-in function with staff, 

member and incorrect user names and passwords.  Menu bars should appear as shown below.    

REMOVE 



 

197 
 

Chapter 5:  Historical timeline 

After an invalid log-in, a user may select the menu option to return to the log-in page.  Staff and members 
may continue to a special user page where further options will be available. 

We will now focus on the sequence of steps taken by staff to set up a new historical timeline, and will 
return later to the index.php page to work on the timeline graphical display. 

Following the flowchart sequence shown at the start of the chapter, the staff options available are: 

 Select and display timeline 

 Set up new timeline 

 Add or edit timeline periods 

 Approve, edit or delete events 

 Add timeline event 

These options will be incorporated into a staff menu bar.  Open a blank file and add the lines of program 
code shown below. 

       <?  
    echo"<table class=menu>";  
    echo"<tr><th class=menu></th>"; 
    echo"<th class=menu>";   
    echo"<a href='index.php'>"; 
    echo"View timeline</a></th>"; 
    echo"<th class=menu>"; 
    echo"<a href='createTimeline.php'>"; 
    echo"Set up new timeline</a></th>"; 
    echo"<th class=menu>"; 
    echo"<a href='timelineDesign.php'>"; 
    echo"Edit timeline periods</a></th>"; 
    echo"<th class=menu>"; 
    echo"<a href='staffListArticles.php'>"; 
    echo"Approve or edit events</a></th>"; 
    echo"<th class=menu>"; 
    echo"<a href='addevent.php'>"; 
    echo"Add event</a></th>"; 
    echo"<th class=menu>"; 
    echo"<a href='login.php'>"; 
    echo"LOG OUT</a></th></tr>"; 
    echo"</table>";   

       ?> 

  
 
Save the file as staffMenu.php and copy it to the server. 

We will begin work on the option to set up new timeline.  Open a blank file and add the lines of program 

code in the two boxes below. 

<html> 
 <head> 
  <title> Historical timeline </title> 
    <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  
 </head> 
 <body> 
 <? 
   include('staffMenu.php'); 
 ?> 
 <br><h3>Set up new timeline</h3><br> 
 <form method=post action='saveTimeline.php'> 
 Timeline title 
 &nbsp;&nbsp;&nbsp; 
  



 

198 
 

Web-based programming projects 

 
 <input type=text size=30 name='timeline'> 
 &nbsp;&nbsp;&nbsp; 
 <br><br>Begins in year: 
 &nbsp;&nbsp;&nbsp;<input type=text size=10 name = 'startYear'>  
 <br><br>Ends in year: 
 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<input type=text size=10  name = 'finishYear'>  
 <p>  
 Enter up to six categories for historical events: 
 <? 
 for ($i=1; $i<=6;$i++) 
 { 
    echo"<p>&nbsp;&nbsp;&nbsp;";  
    echo"<input type=text size=24 ID = 'cat".$i."' name='cat".$i. 
                                         "'    onChange=catChanged()>"; 
    echo"&nbsp;&nbsp;<input type='checkbox' ID='cat".$i."check'>"; 
} 
?> 
<p>&nbsp;&nbsp;&nbsp;<input type=submit value='continue...'> 
</form> 
</body> 

</html> 
 
 

Save the file as createTimeline.php. 

The program produces a web page as shown below.  This provides input boxes for the title and year range 
for the new timeline.  Input boxes will be added for entering categories of event. These categories will be 
represented by graphics symbols on the timeline.  Check boxes are placed after each category input and 
will show a tick if a text entry is present in the box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

To activate the check box display, add the JavaScript catChanged( ) function shown below. 

  



 

199 
 

Chapter 5:  Historical timeline 

?> 
<p>&nbsp;&nbsp;&nbsp;<input type=submit value='continue...'> 
</form> 

<script> 
function catChanged() 
{ 
   for (i=1;i<=6;i++ ) 
   { 
 textboxID="cat"+i; 
 checkboxID="cat"+i+"check";   
 textEntered = document.getElementById(textboxID).value;   
     if (textEntered.length<1)  
     document.getElementById(checkboxID).checked = false;  
 else 
           document.getElementById(checkboxID).checked = true; 
   } 
} 
</script> 

</body> 
</html> 
 

Re-save createTimeline.php and copy it to the server.  Run the website and log-in as staff.  Click on 'STAFF 

PAGE' to reach the 'Set up new timeline' option.  Check that the page is displayed correctly. 

Before carrying out further work on the program, we must set up tables in the database to store the 
timeline and timeline category data.   

Go to the PHP MyAdmin web page and display the list of existing database tables.  Select the 'new' option 
and add a table with the name timeline.  Add fields as shown below.  The integer timelineID field should be 
specified as the primary key, and set to auto-increment as records are added.  The timelineTitle field is of 
data type varchar, with a length of 40 characters.  The year fields are integers. 

 

 

 

 

Save the timeline table. 

Create another new table with the name timelineCategory. Add fields as shown below.  The integer 
categoryID field should be specified as the primary key, and set to auto-increment. The categoryName field 
is of data type varchar, with a length of 30 characters.  The timelineID and symbol fields are integers. 

 

 

 

 

 

Save the timelineCategory table. 

When timeline data is entered, it will be stored in the two database tables.  We now need to set up 
Timeline and TimelineCategory object classes to facilitate the file operations. 



 

200 
 

Web-based programming projects 

Open a blank file and add the lines of program code below to create a Timeline class file. 

The file begins by defining the attributes for a Timeline object, which correspond with the fields of the 
database table.  An array $timelines[ ] is used to identify the objects as $timelines[1], $timelines[2], ...  

We then include a constructor method, and a method to add a new timeline record to the database.  
Notice that the addTimeline( ) method  returns the timelineID value allocated by the auto-number 
function, which will be needed to link the category values to the correct timeline. 

Save the file as Timeline.php and copy it to the server. 

 

<? 
class Timeline 
{   
    public static $timelines=array(); 
    private $timelineID; 
    private $timelineTitle; 
    private $startYear; 
    private $finishYear;    
 
    function __construct($timelineID,$timelineTitle,$startYear,$finishYear) 
    { 
   $this->timelineID = $timelineID; 
   $this->timelineTitle = $timelineTitle; 
   $this->startYear = $startYear;  
   $this->finishYear = $finishYear;  
    }  
  
    public static function addTimeline($timelineTitle,$startYear,$finishYear) 
    {   
      include('user.inc');  
   $conn = new mysqli(localhost, $username, $password, $database); 
      if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
   $query="INSERT INTO timeline VALUES ('','$timelineTitle',  
                                              '$startYear','$finishYear')"; 
   $result=mysqli_query($conn, $query); 
   $timelineID = mysqli_insert_id($conn); 
   mysqli_close($conn);  
      return $timelineID;  
    } 
 } 
 ?> 
 

We will now set up the TimelineCategory class file.  Open a blank file and add the lines of program code 

below to define the attributes for a TimelineCategory object. 

    <? 
    class TimelineCategory 
    {   

public static $categories=array(); 
private $categoryID; 
private $timelineID; 
private $categoryName; 
private $symbol; 

} 
?> 

 
 

Continue by adding a constructor method and an addCategory( ) method to the file, as shown below.   



 

201 
 

Chapter 5:  Historical timeline 

  
 private $categoryName; 
 private $symbol; 
 
 function __construct($categoryID,$timelineID,$categoryName,$symbol) 
 { 
    $this->categoryID = $categoryID; 
    $this->timelineID = $timelineID; 
    $this->categoryName = $categoryName;  
    $this->symbol = $symbol;  
  } 
   
  public static function addCategory($timelineID,$categoryName,$symbol) 
  {   
    include('user.inc');  
    $conn = new mysqli(localhost, $username, $password, $database); 
    if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
    $query="INSERT INTO timelineCategory VALUES ('','$timelineID',  
                                             '$categoryName','$symbol')"; 
    $result=mysqli_query($conn, $query); 
    mysqli_close($conn);  
  } 

 } 
 ?> 

 

Save the file as TimelineCategory.php and copy it to the server. 

We now have the necessary class methods to save a timeline and event categories.  Before entering test 
data, a page must be created to run these methods when the 'continue' button is clicked on the data entry 
page.  Open a blank file and enter the lines of program code below.    

        <? 
   $timelineTitle=$_REQUEST['timeline']; 
   $startYear=$_REQUEST['startYear']; 
   $finishYear=$_REQUEST['finishYear']; 
   $cat[1]=$_REQUEST['cat1']; 
   $cat[2]=$_REQUEST['cat2']; 
   $cat[3]=$_REQUEST['cat3']; 
   $cat[4]=$_REQUEST['cat4']; 
   $cat[5]=$_REQUEST['cat5']; 
   $cat[6]=$_REQUEST['cat6'];   
?> 
<html> 
 <head> 
   <title> Historical timeline </title> 
 </head> 
 <body> 
 </body> 
</html> 
 

 

The program collects the data values entered on the createTimeline.php page and assigns these to PHP 
variables. 

Add further lines of program code to call the addTimeline( ) and addCategory( ) methods which will save 

the records in the database tables. 

  



 

202 
 

Web-based programming projects 

 

    </head> 
       <body>  

<? 
include('Timeline.php'); 
include('TimelineCategory.php'); 
$timelineID = Timeline::addTimeline($timelineTitle,$startYear,$finishYear); 
for ($i=1; $i<=6; $i++) 
{ 
   if (strlen($cat[$i])>0) 
   { 
      TimelineCategory::addCategory($timelineID,$cat[$i],$i);    
   } 
} 
$address = 'Location: timelineDesign.php?timelineWanted='.$timelineID; 
header($address); 
?>   

</body> 
</html> 

 

Save the file as saveTimeline.php and copy it to the server. 

For test purposes, we will now create a timeline with the title 'History of Transport'.  This will cover the 
years from 1700 to 2020, and will include four categories of event:  Road, Sea, Rail and Air.  

Run the website and log-in as staff.  Select the 'Set up new timeline' option from the staff menu. Enter the 

test data into the input boxes, then click the 'continue' button.   

 

 

 

 

 

 

 

 

 

 

 

 

Do not be concerned that the browser displays a 'URL not found' message.  The website is trying to load a 
page timelineDesign.php which we will add shortly.   

Go to the PHP MyAdmin web page.  Open the timeline table and check that a 'History of Transport' record 
is present.  Open the timelineCategory table and check that the four records for Road, Sea Rail and Air are 
present.  



 

203 
 

Chapter 5:  Historical timeline 

Now that the timeline data can be stored successfully in the database, we will add methods to the Timeline 
class file to reload and display the data.  Re-open the Timeline.php file and add the methods shown below.   
Save the updated file and copy it to the server. 

 
 
 public static function loadTimelines() 
 { 
    include ('user.inc'); 
    $conn = new mysqli(localhost, $username, $password, $database); 
    if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
    $query="SELECT * FROM timeline"; 
    $result=mysqli_query($conn, $query); 
    $num=mysqli_num_rows($result);    
    mysqli_close($conn);  
    $i=1;  
    while ($i <= $num)  
    {  
 $row=mysqli_fetch_assoc($result); 
       $timelineID=$row["timelineID"]; 
       $timelineTitle=$row["timelineTitle"]; 
       $startYear=$row["startYear"]; 
       $finishYear=$row["finishYear"];  
 Timeline::$timelines[$i] = new Timeline($timelineID,  
                              $timelineTitle,$startYear,$finishYear); 
 $i++; 
    } 
    return $num; 
  } 

  public function getTimelineID(){return $this->timelineID;} 
  public function getTimelineTitle(){return $this->timelineTitle;} 
  public function getStartYear(){return $this->startYear;} 
  public function getFinishYear(){return $this->finishYear;}  
 

} 
?> 
 

It will also be necessary to add methods to the TimelineCategory class file to reload records from the 

database.  Open the TimelineCategory.php file and add the methods shown in the two boxes below.  Save 

the updated file and copy it to the server. 

 

      public static function loadByTimelineID($timelineIDwanted) 
   {  
     include ('user.inc'); 
     $conn = new mysqli(localhost, $username, $password, $database); 
        if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
     $query="SELECT * FROM timelineCategory WHERE  
                                      timelineID = ".$timelineIDwanted; 
     $result=mysqli_query($conn, $query); 
        $num=mysqli_num_rows($result);    
        mysqli_close($conn);  
     $i=1;  
     while ($i <= $num)  
     { 
           $row=mysqli_fetch_assoc($result); 
  $categoryID=$row["categoryID"]; 
        $timelineID=$row["timelineID"]; 
        



 

204 
 

Web-based programming projects 

            
           $categoryID=$row["categoryID"]; 
        $timelineID=$row["timelineID"]; 
 
           $categoryName=$row["categoryName"]; 
        $symbol=$row["symbol"];  
  TimelineCategory::$categories[$i] = new TimelineCategory($categoryID,   
                                               $timelineID,$categoryName,$symbol); 
   $i++; 
     } 
     return $num; 
  } 

  public function getCategoryName(){return $this->categoryName;} 
     public function getSymbol(){return $this->symbol;} 

   } 
  ?> 

 
 

We can now return to work on the timeline design page which will allow the historical periods to be 

created for the timeline.  The 'History of Transport' timeline might include periods such as: 'The age of sail' 

or 'The jet age'. 

Open a blank file and add the lines of program code shown in the two boxes below.  Save the file as 

timelineDesign.php.  The program will load all timeline records from the database table, then display the 

titles in a drop down list.  When a timeline is selected, its title is displayed below as a heading: 

 

 
 
 
 
 
 
 

 

 

 

 

<html> 
<head> 

<title> Historical timeline </title> 
<link rel="Stylesheet" type="text/css" href="styleSheet.css" />  

</head> 
<body> 

<? 
   include('staffMenu.php'); 
?> 
<h3>Timeline design</h3> 
Add or edit a historical period on an existing timeline. 
<br><br>  
Select timeline: 
<? 
$timelineWanted=$_REQUEST['timelineWanted']; 
include ('Timeline.php'); 
$num = Timeline::loadTimelines(); 
 



 

205 
 

Chapter 5:  Historical timeline 

 
for ($k=1; $k<=$num;$k++) 
{   
   $AtimelineID[$k]=Timeline::$timelines[$k]->getTimelineID();  
   $AtimelineTitle[$k]=Timeline::$timelines[$k]->getTimelineTitle();  
   $AstartYear[$k]=Timeline::$timelines[$k]->getStartYear();  
   $AfinishYear[$k]=Timeline::$timelines[$k]->getFinishYear();  
} 
echo"<select name=timelineWanted ID=timelineWanted onChange=changeTimeline()>"; 
echo"<option>";  
for ($k=1; $k<=$num;$k++) 
{     
   if ($timelineWanted==$AtimelineID[$k]) 
   { 
      echo"<option selected value=".$AtimelineID[$k].">".$AtimelineTitle[$k]; 
      $timelineTitleWanted = $AtimelineTitle[$k]; 
      $startYearWanted=$AstartYear[$k]; 
      $finishYearWanted=$AfinishYear[$k]; 
   } 
   else 
   echo"<option value=".$AtimelineID[$k].">".$AtimelineTitle[$k]; 
} 
echo"</select>"; 
echo "<h3>".$timelineTitleWanted."</h3>";   
?> 
<script> 
function changeTimeline() 
{ 
   timelineIDwanted = document.getElementById("timelineWanted").value; 
   window.location = "timelineDesign.php?timelineWanted="+timelineIDwanted;   
} 
</script>   

   </body> 
   </html> 
 

The next sections of the page will display the start and finish years for the selected timeline, and list the 
timeline categories.  Go to the timelineDesign.php file and add the program code below. 
 

  echo"<option value=".$AtimelineID[$k].">".$AtimelineTitle[$k]; 
} 
echo"</select>"; 
echo "<h3>".$timelineTitleWanted."</h3>";    

include ('TimelineCategory.php'); 
$catCount=TimelineCategory::loadByTimelineID($timelineWanted); 
for ($i=1;$i<=$catCount;$i++) 
{ 
    $catName[$i]=TimelineCategory::$categories[$i]->getCategoryName(); 
} 
echo"<table class=outline  cellpadding=10>"; 
echo"<tr><td>Start year:</td>";  
echo"<td><input type=text size=10 name=startYear value=$startYearWanted></td>"; 
echo"<td>&nbsp;</td></tr>"; 
echo"<tr><td>Finish year:</td>"; 
echo"<td><input type=text size=10 name=finishYear value=$finishYearWanted></td>"; 
echo"<td>&nbsp;</td></tr>"; 
echo"</table>"; 
echo"<br><br>";    
echo"<table class=outline cellpadding=5>"; 
echo"<tr><td>Event categories</td>"; 
echo"<td>&nbsp;</td></tr>"; 



 

206 
 

Web-based programming projects 

echo"<tr><td>Event categories</td>"; 
echo"<td>&nbsp;</td></tr>"; 
 
for ($m=1;$m<=6; $m++) 
{ 
   echo"<tr><td class=plain><input type=text size=30  
                    name='cat".$m."' value='$catName[$m]'></td>"; 
   echo"<td class=plain>&nbsp;</td></tr>";   
} 
echo"</table>"; 
echo"<br><br>";    
echo"<form method=post action='addPeriod.php?timeline=".$timelineWanted."'>"; 
echo"<input type=submit value='add another historical period'>";  
echo"</form>";   

?> 
<script> 
function changeTimeline() 
{ 
   timelineIDwanted = document.getElementById("timelineWanted").value; 
   window.location = "timelineDesign.php?timelineWanted="+timelineIDwanted;   
} 
</script> 
 
 

Save the timelineDesign.php file and copy it to the server.   

Run the website and log-in as staff.  Select the 'Edit timeline periods' option from the staff menu.  Use the 
drop-down list box to select the History of Transport timeline.  Check that the year range and timeline 
categories are displayed correctly, as shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The next step in developing the website is to set up the historical periods which will make up the timeline.  

Before doing this, it will be necessary to create a database table to store the data.  Open the PHP MyAdmin 

web page, list the existing tables and select the 'New' option.   Set up a table with the name timelinePeriod 

and add fields as shown below. 



 

207 
 

Chapter 5:  Historical timeline 

 

 

 

 

 

 

The integer periodID field should be specified as the primary key, and set to auto-increment. The 
periodName and imageName fields are of data type varchar with a length of 30 characters.  The startYear, 
finishYear and yearPixels fields are integers.  Set a default value of '20' for  yearPixels. 

We will now create a class file to facilitate transfer of timeline period records between the database and 
the web page.  Open a blank file and add the lines of program code below.  These define the attributes for a 
TimelinePeriod class, corresponding to the fields of the table.  A constructor method is provided, and an 
addPeriod( ) method to save a timeline period record into the database. 

<? 
class TimelinePeriod 
{   
    public static $periods=array(); 
    private $periodID; 
    private $timelineID; 
    private $startYear; 
    private $finishYear; 
    private $periodName; 
    private $imageName; 
    private $yearPixels; 

    function __construct($periodID,$timelineID,$startYear,$finishYear,     
                                       $periodName,$imageName,$yearPixels) 
    { 
  $this->periodID = $periodID; 
  $this->timelineID = $timelineID; 
  $this->startYear = $startYear;  
  $this->finishYear = $finishYear;  
  $this->periodName = $periodName; 
  $this->imageName = $imageName;  
  $this->yearPixels = $yearPixels;  
    } 

    public static function addPeriod($timelineID,$startYear,$finishYear,  
                                         $periodName,$imageName,$yearPixels) 
    {   
       include('user.inc'); 
 $conn = new mysqli(localhost, $username, $password, $database); 
       if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
 $query="INSERT INTO timelinePeriod VALUES ('','$timelineID',                  
                             '$startYear', '$finishYear','$periodName', 
                                            '$imageName','$yearPixels')"; 
 $result=mysqli_query($conn, $query); 
       mysqli_close($conn);  
    } 
 } 
 ?> 
 
 



 

208 
 

Web-based programming projects 

Save the file as TimelinePeriod.php and copy it to the server. 

Historical periods can now be added to the timeline.  This will involve a series of processes, as illustrated in 

the flowchart shown here. 

 

 

The title of the historical period, its start and 
finish years are entered, e.g. The Age of Sail, 1700 
– 1840. 

 

 

 

The next step will be to create a background 
image for the historical period when it is 
displayed on the timeline web page.  We begin by 
selecting a basic colour from a colour chart.  This 
is then used to create a shaded rectangle. 

 

 

A photographic image is selected which is 
representative of the historical period.  The 
computer will then superimpose the picture on 
the background, using a colour palate linked to 
the background colour. 

 

 

 

The completed background is saved firstly to the 
local computer in .png graphics format, then 
uploaded to the server. 

 

 

 

The final step is to save a text record containing 
the period title, year range and file name for the 
background image.  The record is uploaded to the 
timelinePeriod table in the database.   

 

  



 

209 
 

Chapter 5:  Historical timeline 

We will begin by creating a web page to input the period title and year range, and to control the 

production of the background image.  Open a blank file and add the lines of program code shown below.  

 

        <? 
   $timelineWanted = $_REQUEST["timeline"]; 

?> 
<html> 
<head> 
  <title> Historical timeline </title> 
  <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  
</head> 
<body> 
<? 
   include('staffMenu.php'); 
   include ('Timeline.php'); 
   $count= Timeline::loadTimelines(); 
   $timelineTitleWanted=Timeline::loadTitleByID($timelineWanted,$count); 
   echo"<br><form method=post action='uploadBackground.php?timelineID=  
                         $timelineWanted' enctype='multipart/form-data'>";   
 echo"<h3>".$timelineTitleWanted."</h3>"; 
 echo"Add a historical period:"; 
   echo"<br><br>Period title"; 
   echo"&nbsp;&nbsp;&nbsp;<input type=text size=30 name=periodTitle  
                                     id=periodTitle value='$periodTitle'>";  
 echo"<br><br>Begins in year"; 
 echo"&nbsp;&nbsp;&nbsp;<input type=text size=10 name=startYear  
                                          id=startYear value=$startYear>";  
 echo"<br><br>Ends in year"; 
 echo"&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<input type=text size=10 name=finishYear 
                                               id=finishYear value=$finishYear>";  
 echo"<br><br><br>";   
   echo"<table class=outline cellpadding=10>"; 
   echo"<tr><td><b>Step 1:</b> Click to design a background image which  
                                          you will store on your computer"; 
   echo"&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<input type=button value= 
           'Design background' onClick='newBackground()'></td></tr>"; 
   echo"<tr><td><b>Step 2:</b> The background image can now be uploaded  
                                                      to the server.<br>";    
 echo"Select the background which you designed and stored: <input type= 
                  'file' name='fileToUpload' id='fileToUpload'></td></tr>"; 
 echo"</table>";  
 echo"<br><br><input type=submit value ='Finished' >"; 
 echo"<br><br>"; 
   echo"</form>";      
?> 
</body> 
</html> 
 
 
 

Save the file as addPeriod.php and copy it to the server.   

The objective of the program code is to display an input form and instructions for the user, as shown below. 

. 

 

 



 

210 
 

Web-based programming projects 

 

 

 

 

 

 

 

 

 

 

Before running the page, it will be necessary to add a small method to the Timeline class file which will 

input the timeline ID number and return the corresponding timeline title. 

Open Timeline.php and add the method shown below.  Save the file and copy it to the server. 
 

  public function getStartYear(){return $this->startYear;} 
  public function getFinishYear(){return $this->finishYear;}  
 
  public static function loadTitleByID($timelineIDwanted,$count) 
  { 
   $title=""; 
   for ($i=1; $i<=$count; $i++) 
   { 
      if (Timeline::$timelines[$i]->getTimelineID() == $timelineIDwanted) 
                 $title = Timeline::$timelines[$i]->getTimelineTitle(); 
   } 
     return $title; 
  } 

} 
?> 
 

Run the website and log-in as staff.  Go to 'staff page' and select the 'Edit timeline periods' option from the 
staff menu.  Choose the 'History of Transport' timeline from the drop-down list, then click the 'add another 
historical period' button.  Check that the page display is displayed correctly as shown above, including the 
title 'History of Transport'. 

 

 

 

 

We can now move on to the next stage in setting up the timeline.  After entering a title and year range for 
the historical period, the user will click the 'Design background' button.  To activate this, re-open the 
addPeriod.php file and add a JavaScript function as shown. This function will collect values from the title 
and year range input boxes, and attach them to the URL for a page which will create the background image. 



 

211 
 

Chapter 5:  Historical timeline 

  echo"<br><br><input type=submit value ='Finished' >"; 
    echo"<br><br>"; 
    echo"</form>";      
 ?> 

 <script> 
    function newBackground() 
  {   
    periodTitle = document.getElementById("periodTitle").value;        
    startYear = document.getElementById("startYear").value;  
    finishYear = document.getElementById("finishYear").value;          
    address = "newBackground.php?periodTitle="+periodTitle+ 
             "&startYear="+startYear+"&finishYear="+finishYear;   
    window.location = address; 
  } 
 </script>   

 </body> 
 </html>  
 
 

Save the addPeriod.php file and copy it to the server. 

The next page will allow the user to select a basic colour from the standard HTML colour picker component, 
then use this to create the shaded background rectangle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For this and other graphics tasks during the historical timeline project, the language p5.js will be used.  This 
is not a programming language in its own right, but rather a high level extension of JavaScript.  Processes 
can be written very simply in p5.js code, for example: drawing a circle with a particular size, colour and 
screen position; or finding the X and Y co-ordinates of the mouse and whether a mouse button is being 
pressed.  The p5.js code will then be translated into a sequence of JavaScript commands which actually 
carry out the task.  Any process written in p5.js code could be written directly in native JavaScript and 
would operate in exactly the same way on screen.  However, it would probably require many more lines of 
programming code, would be more complex to understand, and there would be a greater chance of the 
programmer making an error. 

In order to use the p5.js language, two files must be uploaded to the server and placed in the timeline 
folder. The files are: 
                               p5.js                  which handles graphics and other programming commands 
                               p5.dom.js        which allows HTML components to be included with graphics 

Both of these files are available for free download from the developers' web site:  p5js.org 

https://p5js.org/


 

212 
 

Web-based programming projects 

Obtain copies of p5.js and p5.dom.js and upload them to the server.  We can then continue with the 
program development.  Open a blank file and add the lines of program code below. 

 
  <? 
     session_start(); 
     $timelineWanted=$_SESSION["timeline"]; 
     $periodTitle = $_REQUEST["periodTitle"];  
     $startYear = $_REQUEST["startYear"]; 
     $finishYear = $_REQUEST["finishYear"]; 
     $_SESSION["periodTitle"]=$periodTitle; 
     $_SESSION["startYear"]=$startYear; 
     $_SESSION["finishYear"]=$finishYear; 
  ?> 
  <html> 
  <head> 
     <title> Historical timeline </title> 
     <script src="p5.js"></script> 
     <script src="p5.dom.js"></script> 
     <link rel="Stylesheet" type="text/css" href="styleSheet.css" />   
  </head> 
  <body> 
    <? 
       include('staffMenu.php'); 
    ?>  
    <h3>Background design</h3> 

 Click on the coloured button below to adjust the background shading,  
                                                then click to continue.  

    <form method=post action='selectImage.php?imageFile=blank.jpg'> 
    <br><input type=submit value='continue...'> 
    </form> 
  </body> 
  </html> 

 

The program begins by collecting the timeline ID, period title and year range, then saves them as session 
variables for future use.   The p5.js translation files are then loaded. 

The next step is to create a graphics canvas, and add a colour picker component.  As with JavaScript, the 

p5.js code is included within a <script> block.  Insert the lines of program code below. 

 

<form method=post action='selectImage.php?imageFile=blank.jpg'> 
<br><input type=submit value='continue...'> 
</form> 

<script> 
    var inp1; 
    function setup() 
    { 
      createCanvas(1200,540); 
      pixelDensity(1); 
      inp1 = createColorPicker('#aa88aa'); 
      inp1.position(20, 160);   
    } 
</script> 

</body> 
</html> 
 

Save the file as newBackground.php and copy it to the server.  Run the website as previously, logging-in as 
staff and go to the Staff Page.  



 

213 
 

Chapter 5:  Historical timeline 

Select the 'Edit timeline periods' option and choose the History of Transport timeline from the drop-down 
list.  Click the button to add another historical period.  Enter details for a historical period with the title 'Age 
of Sail' and a year range of 1700 to 1840.   

Click the 'Design background' button.  When the new page is loaded, select the colour picker button.   A 
colour choice window should open. 

 
 
 
 
 
 
 

 

 

Return to the newBackground.php file.  We will now add p5.js code to create a shaded rectangle based on 

the colour selected in the colour picker window.  Add the draw( ) function shown below.  

 
function setup() 
{ 
   createCanvas(1200,540); 
   pixelDensity(1); 
   inp1 = createColorPicker('#aa88aa'); 
   inp1.position(20, 160);   
} 

function draw() 
{     
  background(255); 
  noStroke(); 
  fill(inp1.color()); 
  rect(20, 40, 960, 460); 
  loadPixels(); 
  var index = (180 + (200 * width)) * 4; 
  var r = pixels[index]+1; 
  var g = pixels[index+1]+1; 
  var b = pixels[index+2]+1; 
  localStorage.setItem('red', r); 
  localStorage.setItem('green', g); 
  localStorage.setItem('blue', b);    
  for (i=0;i<=100 ;i++ ) 
  { 
     r=r-1; 
     g=g-1; 
     b=b-1;    
     if (r<0) 
  r=0;     
     if (g<0) 
  g=0; 
     if (b<0) 
        b=0; 
     fill(r,g,b); 
     rect(20, 240+2*i, 960, 60); 
  }    
} 

</script> 



 

214 
 

Web-based programming projects 

Save the newBackground.php file and copy it to the server.  Refresh the page in the browser.  A shaded 

rectangle should now appear.  Its colour can be changed by means of the colour picker component.  For the 

historical timeline, it will be best to choose dark backgrounds for the historical periods.  This can be done 

easily by moving just the lower slider on the colour chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The draw( ) function begins by obtaining the red, green and blue values (0-255) for the colour selected in 
the colour picker window.  A loop then operates, moving downwards and drawing a series of coloured 
stripes across the screen.  After each stripe is drawn, the red, green and blue values are reduced by 1.  This 
causes the next stripe to be very slightly darker in colour.  

Following the sequence outlined in the flowchart on page 208, the next step is to add a picture image to 

the background.  This will be done on another web page.  Before continuing with the programming, obtain 

a photograph of a sailing ship and save this on your computer in .jpg or .png format. 

Open a blank file and add the lines of program code shown in the two boxes below.  Save the file as 
selectImage.php and copy it to the server.  

 

 
<? 
   session_start(); 
   $imageFile=$_REQUEST['imageFile']; 
   $upload=$_REQUEST['upload']; 
?> 
<html> 
<head> 
  <title> Historical timeline </title> 
  <script src="p5.js"></script> 
  <script src="p5.dom.js"></script> 
  <link rel="Stylesheet" type="text/css" href="styleSheet.css" />    
</head> 
 
 

 change colour 



 

215 
 

Chapter 5:  Historical timeline 

<body> 
  <? 
     include('staffMenu.php'); 
  ?> 
  <h3>Select background image</h3>   
  <b>&nbsp;&nbsp;Step 1:</b> Select an image filename, then click  
             'upload image' to add this image to the background. <br> 
  <table border="0" cellpadding="10">   
  <form action="upload.php" name="itemEntryForm" method="post"  
                                        enctype="multipart/form-data">   
  <tr> 
  <td> 
 </td> 
 <td>  
 <input type="file" name="fileToUpload" id="fileToUpload"> 
 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;      
 <input type="submit" value="Upload Image" name="submit">     
  <?                    
      echo"<input type='hidden' name='imageFile' Width='300px'  
                                             value= '$imageFile' >";   
 ?>     
 </td> 
 </tr>   
 </form>          
 <tr><td colspan=3><b>Step 2:</b> Click the 'save' button then wait 
            a few seconds as the computer prepares to save the background. 
 <input type=button value='save' onClick='uploadImage()'> 
 <form method=post action='addPeriod.php'></td></tr> 
 <tr><td colspan=3><b>Step 3:</b> Click the 'finished' button to return 
     to the Add Historical Period page and upload your saved background file.    
 <input type=submit value='finished'> 
 </form> 
 </td></tr> 
 </table> 
</body> 
</html> 
 
 

The program links to the p5.js files which will be needed to create a graphics image.  A sequence of 

instructions are then provided for the user.   A button will open a file window to allow a photograph to be 

selected.  A second button will then upload the photograph. 

In the web browser window, click the 'continue' button on the page where the shaded background has 

been created.  The 'Select background image' page should now open.  Click the 'Choose file' button and 

check that a file selection window opens and the sailing ship image can be located.  

 

 

 

 

 

 

 

 



 

216 
 

Web-based programming projects 

Another page will be required to upload of the photograph.  Open a blank file and add the program code 

below.  Save the file as upload.php and copy it to the server. 

<? 
   $imageFile = $_REQUEST['imageFile']; 
   $target_dir = "uploads/"; 
   $target_file = $target_dir . basename($_FILES["fileToUpload"]["name"]); 
   $uploadOk = 1; 
   $imageFileType = strtolower(pathinfo($target_file,PATHINFO_EXTENSION)); 
   if (move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $target_file))  
   { 
       echo "The file ". basename( $_FILES["fileToUpload"]["name"]). "  
                                                      has been uploaded."; 
    }  
   $imageFile = basename( $_FILES["fileToUpload"]["name"]);  
   header("Location: selectImage.php?imageFile=$imageFile&upload=YES"); 
?> 
 
 

Create a sub-folder within the timeline folder on the server.  Give this the name uploads.  

Return to the web browser.  Click the 'Choose file' button and select the sailing ship picture, then click the 

'Upload image' button.  Refresh the list of files in the server FTP program, then check that the sailing ship 

picture file is present in the uploads sub-folder within the timeline folder. 

Return now to the selectImage.php file.  Add the p5.js program code shown in the two boxes below.   
Save the file and copy it to the server. 

     <tr><td colspan=3><b>Step 3:</b> Click the 'finished' button to return 
    to the Add Historical Period page and upload your saved background file.    
<input type=submit value='finished'> 
</form> 
</td></tr> 
</table> 

<script> 
 function preload() 
 {  
    var imageWanted="uploads/<? echo $imageFile ?>"; 
    img1=loadImage(imageWanted); 
    img1.filter(GRAY);     
    saved=false;    
 }         
 function setup() 
 { 
    createCanvas(1200,450); 
    pixelDensity(1);      
 } 
 function draw() 
 {  
    var r=localStorage.getItem('red');  
    var g=localStorage.getItem('green');  
    var b=localStorage.getItem('blue');       
    background(155); 
    noStroke(); 
    fill(r,g,b); 
    rect(0, 0, 1200, 450);           
    for (i=0;i<=100 ;i++ ) 
    {      
   r=r-1; 
   g=g-1; 

 



 

217 
 

Chapter 5:  Historical timeline 

         r=r-1; 
   g=g-1; 

         b=b-1;        
   if (r<0) 
       r=0;       
   if (g<0) 
       g=0;      
   if (b<0) 
         b=0;  
   fill(r,g,b); 
   rect(0, 200+2*i, 1200, 60); 
    } 
  } 
 </script> 

</body> 
</html> 
 

Refresh the web page in the browser.  The shaded background rectangle should be displayed as previously.  
We will now add program code to display the picture image. 

Return to the selectImage.php file and add lines of code to the draw( ) function as shown below.  Also add 
an uploadImage( ) function.  Save the selectImage.php file and copy it to the server. 
 

         if (b<0) 
         b=0;  
   fill(r,g,b); 
   rect(0, 200+2*i, 1200, 60); 
    } 

    image(img1,0,60,450,400); 
    img1.filter(GRAY);  
    loadPixels(); 
     for (y=60;y<=450 ;y++ ) 
    { 
    for (x=0;x<450 ;x++ ) 
  {       
          index = ((y*width)+x) * 4;    
          rpix = pixels[index + 0]+1; 
          gpix = pixels[index + 1]+1; 
          bpix = pixels[index + 2]+1;  

               rp= int(rpix * r /80); 
               gp= int(gpix * g /80); 

     bp= int(bpix * b /80) 
           fill(rp,gp,bp,100); 
     rect(x,y,1,1); 
    }          
     }                 

  } 

 function uploadImage() 
 { 
     if (saved==false) 
     { 
  saved=true; 
  saveCanvas();      
     }                       
 } 

 </script> 
</body> 
</html> 



 

218 
 

Web-based programming projects 

Refresh the browser window.  Wait for a few seconds, then the background should re-appear with the 
sailing ship picture superimposed, as shown below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

The program uploaded the photograph, then converted it to a grey scale image using the filter(GRAY) 
command.  A loop then obtained the grey value of each photograph pixel and scaled it according to the red, 
green and blue components of the background colour.  Where a pixel was light grey in the photograph, a 
light colour was generated, whilst a dark grey pixel generated a darker version of the base colour.  Finally, 
the coloured pixel was copied onto the background to create the superimposed image.  

In the browser window, click the 'save' button shown for Step 2 of the instructions.  Be patient as the 
computer does a lot of work to create a .png file from the finished background image. A file save dialog 
window will then appear.  Select a folder on your computer and save the file as 'age of sail.png'.  

Click the 'finished' button to return to the 'Add a historical period' page.  Currently the input boxes are 
blank.  It is necessary to reload session variables and display these in the boxes. Re-open the 
addPeriod.php file and add the lines of code at the start of the program as shown below.  

       <? 

          session_start(); 
          $startYear = $_SESSION["startYear"]; 
          $finishYear = $_SESSION["finishYear"]; 
          $periodTitle = $_SESSION["periodTitle"]; 

          $timelineWanted = $_REQUEST["timeline"]; 

          if ($timelineWanted>0) 
             $_SESSION["timeline"]=$timelineWanted; 
          else 
             $timelineWanted=$_SESSION["timeline"]; 

      ?> 
      <html> 
      <head> 
          <title> Historical timeline </title>  
 

Save addPeriod.php and copy it to the server.  Refresh the web page.   



 

219 
 

Chapter 5:  Historical timeline 

The historical period title and year range entered earlier should now be displayed.  Click the 'Choose file' 
button at Step 2 of the instructions, and check that the combined background image has been saved on 
your computer. 

 
 
 

 

 

 

 

 

 

 

 

 

 

We have another component to add to the page.  This is an interactive scale for setting the number of 
pixels representing each year of the historical period.  It may be the case that a period represents a 
considerable number of years with few historical events to display, such as the Dark Ages.  Conversely, 
many events may need to be recorded for a short span of years, such as the Second World War.  Adjusting 
the year scales for different periods  will even out the display of events along the timescale.  

The year scale will begin by displaying a default value of 20 screen pixels per year.  It will then be possible 
to adjust the year spacing by dragging the mouse along the scale. 

 

 

 

 

 

 

 

Programming for the year scale will require a range of graphics commands, so p5.js will be used. 

Re-open the addPeriod.php file.  Go to the <head> section and add links to the p5.js files.  

<html> 
 <head> 
  <title> Historical timeline </title> 
    <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  

    <script src="p5.js"></script> 
    <script src="p5.dom.js"></script> 

 </head> 



 

220 
 

Web-based programming projects 

It is necessary to create a blank space on the page where the graphics can be displayed.  Add a loop to 
insert <br> characters between Step 2 of the instructions and the 'Finished' button. 

 
   echo"<tr><td><b>Step 2:</b> The background image can now be uploaded  
                                                      to the server.<br>";    
 echo"Select the background which you designed and stored: <input type= 
                            'file' name='fileToUpload' id='fileToUpload' >"; 
 echo"</table>";  

  for ($s=1; $s<=9; $s++) 
  { 
     echo"<br>";     //timeline scale goes here 
  }  

 echo"<br><br><input type=submit value ='Finished' >"; 
 echo"<br><br>"; 
   echo"</form>";      
 
 

Go now to the <script> block at the bottom of the program listing.  After the newBackground( ) JavaScript 
function, add a yearPixels variable and the setup( ) function, as shown below.   

The setup( ) function will be run by p5.js when the page loads.  It creates a drawing canvas with the 

specified width and height, then inserts it into the web page at the required position.  

 

<script> 
    function newBackground() 
    {   
  periodTitle = document.getElementById("periodTitle").value;        
  startYear = document.getElementById("startYear").value;  
  finishYear = document.getElementById("finishYear").value;          
  address = "newBackground.php?periodTitle="+periodTitle+"&startYear="  
                                        +startYear+"&finishYear="+finishYear;  
  window.location = address; 
    } 

    var yearPixels = 20; 

    function setup()  
    { 
       var y=400;  
       let cnv = createCanvas(680, 120); 
       cnv.position(10, y); 
       dragging=false; 
    } 

</script>   
</body> 
</html> 
 

 

We will now produce the year scale. This will have a default value of 20 pixels per year. 

 

 

 



 

221 
 

Chapter 5:  Historical timeline 

The program uses a loop to draw the year divisions on the time scale, using the current value of yearPixels 
to determine the spacing.  A MOD operator, represented in p5.js by the % symbol, identifies year locations 
exactly divisible by 5 and adds captions at this points.   

The p5.js programming system has been designed to simplify graphics animation on web pages.  Central to 
this concept is the draw( ) function which refreshes the graphics display many times a second.  Each time 
draw( ) is automatically called, values of variables such as the X and Y position of the mouse pointer are 
checked.   

Add a draw( ) function below the setup( ) function as shown below.  Save the file and copy it to the server.  
Refresh the web page.   

  function setup()  
  { 
    var y=400;  
    let cnv = createCanvas(680, 120); 
    cnv.position(10, y); 
    dragging=false; 
  } 

 function draw() 
 { 
    background(255); 
    fill(255); 
    stroke(0); 
    rect(1,0,678,120); 
    textSize(16); 
    fill(0); 
    noStroke(); 
    text('Year scale for this period. Drag the mouse to adjust.   
                                         Pixels per year:',10,20); 
    fill(210); 
    rect(10,40,600,40); 
    x=20; 
    y=44; 
    stroke(0); 
    line(x,y,x+580,y); 
    var i=0; 
    var yearStart=1800;  
    for (xpos=x;xpos<=(x+560) ;xpos = xpos+yearPixels ) 
    {          
  i++; 
  stroke(0); 
  line(xpos,y,xpos,y+5); 
  if(i%5== 0) 
  { 
           stroke(0); 
     line(xpos,y,xpos,y+10);    
     yearDate=yearStart+i; 
     fill(0); 
     noStroke(); 
           textSize(12); 
     text(yearDate,xpos-12,y+26);       
  }  
    } 
    textSize(16); 
    noStroke(); 
    text(int(yearPixels),500,20);  
 } 

 </script>   
 </body> 
</html> 



 

222 
 

Web-based programming projects 

In the next programming step, we will interactively adjust the yearPixels value by dragging the mouse.   
This in turn will cause the year scale to be plotted with a different interval when the draw( ) function is 
called again.  

Return to the addPeriod.php file.  We will now add the interactive mouse function to the draw( ) 

procedure.  Add the lines of program code shown below.  

 

 
        if(i%5== 0) 
  { 
           stroke(0); 
     line(xpos,y,xpos,y+10);    
     yearDate=yearStart+i; 
     fill(0); 
     noStroke(); 
           textSize(12); 
     text(yearDate,xpos-12,y+26);       
  }  
    } 

     if (mouseIsPressed==true) 
     {    
  if ((mouseY>10)&&(mouseY<100)) 
  {  
     if (dragging==false) 
     {  
         dragging=true; 
   oldX=mouseX; 
     }  
     change=mouseX-oldX; 
     yearPixels=yearPixels+change/4;  
     if (yearPixels<6) 
     yearPixels=6; 
     if (yearPixels>100) 
     yearPixels=100; 
     oldX=mouseX;               
  }      
     } 
    else 
    {      
       dragging=false; 
     } 

     textSize(16); 
     noStroke(); 
     text(int(yearPixels),500,20);  
 } 
 </script>   

</body> 
</html> 
 
 

 

Save the addPeriod.php file and copy it to the server.  Refresh the web page.  Drag the mouse pointer 

sideways on the grey shaded area of the timescale.  It should be possible to adjust the year spacing over 

the range from 6 to 100 pixels per year, as shown below.    



 

223 
 

Chapter 5:  Historical timeline 

 

 

 

 

 

 

This completes the input of all the required data for a historical period, and the record can now be saved 
into the database.  On clicking the 'Finished' button, a web page will be loaded which will carry out several 
functions: 

 The period title, start year and finish year will be obtained from the text input boxes by means of 
$_REQUEST[ ] commands. 

 The timelineID value stored as a session variable will be obtained using a $_SESSION[ ] command. 

 An image name will be created by adding the timelineID to the file name of the background image, 
for example: victorianPeriod_3.png.  This will avoid any ambiguity if the same background image 
name is used in more than one timeline.  The background image will then be uploaded to a 
backgrounds folder on the server. 

 The yearPixel value will be retrieved.  

 Finally, the addPeriod( ) method in the TimelinePeriod class file will be called to save the record 
into the database. 

In preparation for saving the image file, go to the server and create a backgrounds sub-folder within the 
timeline folder. 

A convenient way to store the yearPixels value is in a hidden input box.  Go to the addPeriod.php file and 
insert this component before the end of the form. 
 

    for ($s=1; $s<=9; $s++) 
    { 
        echo"<br>"; //timeline scale goes here 
     } 
    echo"<br><br><input type=submit value ='Finished' >"; 
    echo"<br><br>"; 

    echo"<input type='hidden' name='yearPixels' id='yearPixels' >"; 

     echo"</form>";      
?> 
<script> 
    function newBackground() 
 

 

It is then just necessary to set the value of yearPixels when the time scale is adjusted.  Add a line of code at 
the end of the draw( ) function.  

      textSize(16); 
      noStroke(); 
      text(int(yearPixels),500,20); 

      document.getElementById("yearPixels").value = yearPixels;  

   } 
   </script>   
 </body> 

 



 

224 
 

Web-based programming projects 

Save the addPeriod.php file and copy it to the server.   

Open a blank file and add the lines of program code below. 

<? 
   session_start(); 
   $timeline = $_SESSION["timeline"]; 
   $startYear = $_REQUEST["startYear"]; 
   $finishYear=$_REQUEST['finishYear']; 
   $periodTitle=$_REQUEST['periodTitle']; 
   $yearPixels=$_REQUEST['yearPixels']; 
   $yearPixels=intval($yearPixels);    
   $target_dir = "backgrounds/"; 
   $target_file = $target_dir . basename($_FILES["fileToUpload"]["name"]); 
   $target_file =substr($target_file,0,-4);  
   $target_file = $target_file.'_'.$timeline.'.png'; 
   $imageFileType = strtolower(pathinfo($target_file,PATHINFO_EXTENSION)); 
   move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $target_file);  
   $imageName = substr($target_file,12); 
   include ('TimelinePeriod.php'); 
   TimelinePeriod::addPeriod($timeline,$startYear,$finishYear,  
                                    $periodTitle,$imageName,$yearPixels); 
   $addressString="Location: timelineDesign.php?timelineWanted=".$timeline; 
   header($addressString); 
?> 
 
 

Save the file as uploadBackground.php and copy it to the server. 

We can now test the complete procedure for adding a timeline period.  Run the website and log-in as staff.  
Select the 'Edit timeline periods' option from the menu.  Choose the History of Transport timeline, then 
click 'add another historical period'.  Enter test data: 

 period title 'Age of Sail'  

 year range 1700 – 1840.  
Select the sailing ship background prepared earlier, then adjust the year scale to 12 pixels per year.  When 
data entry is complete, click the 'Finished' button.  The program should return to the Timeline Design page.   

Go to the PHP MyAdmin web page and open the timelinePeriod table.  Check that the record has been 
uploaded correctly.  Also check on the server that the background image is in the backgrounds folder. 

We will now add a table to the Timeline Design page to display details of the timeline periods entered and 
their background images.  Open the timelineDesign.php file and add the lines of program code shown 
below. 

  for ($m=1;$m<=6; $m++) 
  { 
      echo"<tr><td class=plain><input type=text size=30 name='cat".$m. 
                                                 "' value='$catName[$m]'>"; 
      echo"<td class=plain>&nbsp;";   
  } 
  echo"</table>"; 
  echo"<br><br>"; 

  echo"<table>"; 
  echo"<tr><th class=outline width=300>Period </th>"; 
  echo"<th class=outline width=120>Begin </th>"; 
  echo"<th class=outline width=120>End </th>"; 
  echo"<th class=outline>Background image </th>";  
  echo"</tr></table>";   
  echo"<br><br>";  

  echo"<form method=post action='addPeriod.php?timeline=".$timelineWanted."'>"; 
  echo"<input type=submit value='add another historical period'>";  



 

225 
 

Chapter 5:  Historical timeline 

Save the timelineDesign.php file and copy it to the server, then refresh the web page.  Headings should 
now be displayed at the bottom of the page, ready to create the table of historical periods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To obtain data for the table, we must add methods to the TimelinePeriod class file to load and access the 

period records for a particular timeline, as identified by its timelineID value.  

Open the TimelinePeriod.php file.  Add the loadByTimelineID( ) method and the set of get( ) methods 

which will allow the object attributes to be displayed on the web page. 

 
public static function loadByTimelineID($timelineIDwanted) 
{  
   include ('user.inc'); 
   $conn = new mysqli(localhost, $username, $password, $database); 
   if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
   $query="SELECT * FROM timelinePeriod WHERE timelineID=".  
                             $timelineIDwanted." ORDER BY startYear"; 
   $result=mysqli_query($conn, $query); 
   $num=mysqli_num_rows($result);    
   mysqli_close($conn);  
   $i=1;  
   while ($i <= $num)  
   { 
      $row=mysqli_fetch_assoc($result); 
      $periodID=$row["periodID"]; 
      $timelineID=$row["timelineID"]; 
      $startYear=$row["startYear"]; 
      $finishYear=$row["finishYear"]; 
      $periodName=$row["periodName"]; 
      $imageName=$row["imageName"]; 
      $yearPixels=$row["yearPixels"];  
      TimelinePeriod::$periods[$i]=new TimelinePeriod($periodID,$timelineID, 
                   $startYear,$finishYear,$periodName,$imageName,$yearPixels);   
      $i++; 
   } 
   return $num; 
 } 
 public function getPeriodName(){return $this->periodName;} 
 public function getPeriodID(){return $this->periodID;} 
 public function getStartYear(){return $this->startYear;} 
 public function getFinishYear(){return $this->finishYear;} 
 public function getImageName(){return $this->imageName;} 
 public function getYearPixels(){return $this->yearPixels;} 

} 
?> 



 

226 
 

Web-based programming projects 

Save the TimelinePeriod.php file and copy it to the server. 
 
Return to the timelineDesign.php file and add a loop to create the table display as shown below.  Save the 
file and copy it to the server.  Refresh the Timeline Design web page. 
 

echo"<th class=outline width=120>Begin </th>"; 
echo"<th class=outline width=120>End </th>"; 
echo"<th class=outline>Background image </th>";  

include ('TimelinePeriod.php'); 
$count = TimelinePeriod::loadByTimelineID($timelineWanted); 
for ($i=1; $i<=$count; $i++) 
{ 
   echo"<tr><td class=outline>".TimelinePeriod::$periods[$i]->getPeriodName()."</td>"; 
   echo"<td class=outline>".TimelinePeriod::$periods[$i]->getStartYear()."</td>"; 
   echo"<td class=outline>".TimelinePeriod::$periods[$i]->getFinishYear()."</td>"; 
   echo"<td class=outline ><img src='backgrounds/". 
             TimelinePeriod::$periods[$i]->getImageName()."' width=300></th>"; 
} 

echo"</tr></table>";   
echo"<br><br>";  
echo"<form method=post action='addPeriod.php?timeline=".$timelineWanted."'>"; 

 
 

An entry should now appear in the table for the Age of Sail historical period which we created earlier.  A 
small version of the background image is displayed.  
 
 
 
 
 
 
 
 
 
 

Further historical periods can now be added to the History of Transport timeline.  Before doing this, we will 
create and upload a blank image file to the server.  This will act as a placeholder on the shaded graphics 
background.  The program expects an image to be displayed, and an error could occur if a picture image has 
not yet been uploaded. 

Create a grey rectangle with a width of approximately 350 pixels and a height of 300 pixels.   

 

 

 

 
Save this as a graphics file blank.jpg and copy it to the uploads folder on the server.   

We can now add the next historical period.  This will have the title 'Steam', and will cover the years from 
1840 to 1950.  The scale should be set to 20 pixels/Year. 



 

227 
 

Chapter 5:  Historical timeline 

Click the 'add another historical period' button to load the addPeriod page.  You will see that details of the 
previous historical period are still shown in the input boxes:   

 

 

 

 

 

 

The input boxes should be cleared when a new period is to be entered.  Open the timelineDesign.php file 
and add a block of code at the start of the program to do this. 

 
 

<? 
   session_start(); 
   $_SESSION["startYear"]=''; 
   $_SESSION["finishYear"]=''; 
   $_SESSION["periodTitle"]=''; 
?> 

<html> 
<head> 
<title> Historical timeline </title> 

 
 

Save the timelineDesign.php file and copy it to the server.  

Click the 'back' button on the web browser to return to the timelineDesign page.  Refresh the page, then 
select the 'add another historical period' button again.  The input boxes should now be blank. 

Enter the title Steam, and year 
range from 1840 to 1950. 

Obtain a picture of a  railway 
locomotive and create a 
background image.  Save this to 
your computer, then return to the 
data entry page.  Select the saved 
background, and check that the 
scale is set to 20 pixels/year.  Click 
the Finished button.   

 

 

 

Use the same procedure to add a third historical period: 

 The Modern Era, from 1950 to 2020.  Set the scale to 30 pixels/Year. 

Select a suitable background colour and image. 

After the historical period is added, the program will return to the Timeline Design web page and details 

should be displayed in the table.   



 

228 
 

Web-based programming projects 

 

 

 

 

 

 

 

 

 

 

Now that a complete timeline has been designed, we can create a page to display this.  

The web site menu will allow the selection of timelines covering different topics, for example: 

 

 

In order to test this function, use the 'Set up new timeline' option to create several more timelines with 
different titles.  There is no need at this stage to add historical periods to these timelines. 

The timelines will be displayed on the index.php page, which loads by default when a user enters the web 

site URL.   Open the index.php file and add three blocks of code to the <body> section as shown below. 

 The first block loads the set of Timeline objects, so that the timeline titles and ID values are 

available.  The first timeline ID found is used as a default, but is replaced if the user selects a 

different timeline from the menu bar. 

 The second block uses a loop to display each of the timeline titles on the menu bar.  Clicking a 

menu option will reload the page, with the selected timeline ID value included in the URL. 

 The third block is for test purposes only, to check that the correct set of historical periods is loaded 

when a timeline is selected from the menu bar. 

 

<body> 
 <? 

   include('Timeline.php'); 
   $timelineCount=Timeline::loadTimelines();  
   $timelineWanted = Timeline::$timelines[1]->getTimelineID(); 
   $timelineID=$_REQUEST['timelineWanted']; 
   if ($timelineID>0) 
        $timelineWanted = $timelineID; 

   echo"<table class=menu>";  
   echo"<tr><th class=menu> </th>"; 
   echo"<th class=menu>"; 
   if ($login=='member') 
   { 
 echo"<a href='memberArticles.php'>"; 
 echo"MEMBER PAGE</a></th>";   
   } 
 



 

229 
 

Chapter 5:  Historical timeline 

 
   else if ($login=='staff') 
   { 
       echo"<a href='staffListArticles.php'>"; 
 echo"STAFF PAGE</a></th>"; 
   } 
   else 
   { 
 echo"<a href='login.php'>"; 
 echo"LOG-IN</a></th>";  
   } 

   for ($i=1;$i<=$timelineCount;$i++) 
   { 
     echo"<th class=menu>"; 
    $timelineID = Timeline::$timelines[$i]->getTimelineID(); 
    echo"<a href='index.php?timelineWanted=".$timelineID."'>"; 
    echo Timeline::$timelines[$i]->getTimelineTitle()."</a></th>"; 
   } 

   echo"</tr>";   
   ?> 
   </table> 

   <?  
      include ('TimelinePeriod.php'); 
      $periodCount = TimelinePeriod::loadByTimelineID($timelineWanted); 
      for ($i=1; $i<=$periodCount; $i++) 
      { 
   echo"<p>".TimelinePeriod::$periods[$i]->getPeriodName(); 
      }   
   ?> 

 </body> 
 </html> 
 
 

Save index.php and copy it to the server.   

Run the web site.  Select timeline titles from the main menu bar.  When the History of Transport timeline is 

chosen, the titles of the three periods should be displayed. 

 

 

 

 

We will now work on the graphical display for the timeline.  This will be interactive, so p5.js will be a 
suitable programming language. 

Re-open the index.php file and add links to p5.js in the <head> section.  

<html> 
 <head> 
  <title> Historical timeline </title> 
    <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  

    <script src="p5.js"></script> 
    <script src="p5.dom.js"></script> 

 </head> 



 

230 
 

Web-based programming projects 

We will begin by displaying the background image for the first historical period of the History of Transport 
timeline. Go to the <body> section of the index.php file.  Locate the loop after the table closes which 
outputs the names of the historical periods. Replace the 'echo' command with a command to load 
background image names, as shown below.   Add a <script> block containing JavaScript and p5.js code. 

 

 

 

 

 

 

 

 

 

 

</table> 
<?  
  include ('TimelinePeriod.php'); 
  $periodCount = TimelinePeriod::loadByTimelineID($timelineWanted);  
  for ($i=1; $i<=$periodCount; $i++) 
  {       

        $Abackground[$i]= TimelinePeriod::$periods[$i]->getImageName(); 

  }        
?>  

<script> 
 var periodCount=<? echo $periodCount ?>; 
 var Abackground = <?php echo json_encode($Abackground) ?>; 
 let imgbk= [];  
 function preload()  
 { 
   for (i=1;i<=periodCount;i++ ) 
   {  
      filename= Abackground[i]; 
      imgbk[i]=loadImage('backgrounds/'+filename); 
   } 
 } 
function setup() 
{ 
   createCanvas(1200,540); 
   background(210);  
} 
function draw() 
{   
   background(210); 
   drawTimeline(); 
} 
function drawTimeline() 
{ 
   image(imgbk[1],0,0);  
} 
</script> 

</body> 



 

231 
 

Chapter 5:  Historical timeline 

Save the index.php file and copy it to the server.  Refresh the web page and check that the 'Age of Sail' 
background image is displayed, with a grey rectangular block below it. 

A series of functions are included in the <script> block above.  Preload( ) ensures that resources are loaded 
before the web page is run, to avoid displaying incomplete graphics.  Setup( ) runs once to create the 
graphics drawing area on the page. Draw( ) is then run multiple times each second, and calls the 
drawTimeline( ) function to display the 'Age of Sail' background image.  We can add further program code 
to any of these functions as necessary. 

Return to the index.php file.  To create the timeline display, further data will be needed for each of the 
historical periods.  Add lines of program code to the <body> section as shown below.  A loop loads the 
attributes for each timelinePeriod object and stores these in PHP arrays.  The PHP arrays are then 
converted to JavaScript arrays by means of JSON (JavaScript Object Notation) encoding. 

       <?  

   include ('TimelinePeriod.php'); 
   $periodCount = TimelinePeriod::loadByTimelineID($timelineWanted); 
   for ($i=1; $i<=$periodCount; $i++) 
   {       
       $Abackground[$i]= TimelinePeriod::$periods[$i]->getImageName(); 

       $AperiodName[$i]= TimelinePeriod::$periods[$i]->getPeriodName(); 
       $AperiodStartYear[$i]= TimelinePeriod::$periods[$i]->getStartYear(); 
       $AperiodFinishYear[$i]= TimelinePeriod::$periods[$i]->getFinishYear(); 
       $AyearPixels[$i]= TimelinePeriod::$periods[$i]->getYearPixels(); 

   }    
?> 
<script> 
   var periodCount=<? echo $periodCount ?>; 
   var Abackground = <?php echo json_encode($Abackground) ?>; 

   var AperiodName = <?php echo json_encode($AperiodName) ?>; 
   var AperiodStartYear = <?php echo json_encode($AperiodStartYear) ?>; 
   var AperiodFinishYear = <?php echo json_encode($AperiodFinishYear) ?>; 
   var AyearPixels = <?php echo json_encode($AyearPixels) ?>; 

   let imgbk= [];  
   function preload()  
   { 

 

Now that a full set of information about the historical periods is available, we will make use of this to 

display the title and year range for the 'Age of Sail' period.   

Add lines of program code to the drawTimeline( ) function. 

 
  function drawTimeline() 
  { 
     image(imgbk[1],0,0); 

     textSize(20);  
     fill(255); 
     noStroke(); 
     text(AperiodName[1],20,30); 
     textSize(16); 
     text(AperiodStartYear[1]+ " - "+AperiodFinishYear[1],20,52); 

  } 
 
 



 

232 
 

Web-based programming projects 

Save the index.php file and copy it to the server.  Refresh the web page and check that the title and year 

range are displayed correctly above the picture image. 

 
 
 
 
 
 
 
 
 
 
 

Return to the index.php file.  Add lines of program code which will obtain the start year and finish year for 

the current timeline.  These values are then transferred from PHP variables to JavaScript variables.  

 
     
    for ($i=1; $i<=$periodCount; $i++) 
    {       
       $Abackground[$i]= TimelinePeriod::$periods[$i]->getImageName(); 
 $AperiodName[$i]= TimelinePeriod::$periods[$i]->getPeriodName(); 
       $AperiodStartYear[$i]= TimelinePeriod::$periods[$i]->getStartYear(); 
       $AperiodFinishYear[$i]= TimelinePeriod::$periods[$i]->getFinishYear(); 
 $AyearPixels[$i]= TimelinePeriod::$periods[$i]->getYearPixels(); 
    } 

    for ($i=1; $i<=$timelineCount; $i++) 
    { 
 $timelineID=Timeline::$timelines[$i]->getTimelineID(); 
 if ($timelineID==$timelineWanted) 
 { 
          $timelineStart = Timeline::$timelines[$i]->getStartYear(); 
    $timelineFinish = Timeline::$timelines[$i]->getFinishYear(); 
 }    
    } 

?> 
<script> 

   var timelineStart=<? echo $timelineStart ?>; 
   var timelineFinish=<? echo $timelineFinish ?>; 
   var xoffset=0; 
   var xoffset2=0; 
   var down=false; 

   var periodCount=<? echo $periodCount ?>; 
   var Abackground = <?php echo json_encode($Abackground) ?>; 
 
 

 

As a first step towards producing time scale graduations below the background image, we will calculate 
how many pixels represent the whole timeline from the start year to the finish year.  This will depend on 
the pixel scales used for the different periods.  

Add further lines of program code to the drawTimeline( ) method.  A loop obtains the number of years and 
the pixel scale for each of the timeline periods, then adds the required number of pixels to the overall total 
for the complete timeline.   

  



 

233 
 

Chapter 5:  Historical timeline 

                       text(AperiodName[1],20,30); 
    textSize(16); 
    text(AperiodStartYear[1]+ " - "+AperiodFinishYear[1],20,52); 

    pixelCount=0; 
    for (i=1;i<=periodCount;i++ ) 
    { 
 start=AperiodStartYear[i]; 
 if (i==1) 
      start=timelineStart; 
 stop=AperiodFinishYear[i]; 
 if (i==periodCount) 
      stop=timelineFinish; 
 extraPixels = (stop-start)* AyearPixels[i]; 
 pixelCount=pixelCount+extraPixels;  
   } 
   text("pixel count = "+pixelCount,500,400); 

} 
</script> 
 
 

A test output line has been added.  Save index.php and copy it to the server.  Refresh the web page and 

check that a reasonable number of pixels has been calculated for the History of Transport timeline.  

 
 
 
 
 
 

 

 

We can now create the time scale.  Return to index.php and replace the text line outputting the pixel count 
with the block of program code shown in the two boxes below. 

A loop operates for each year of the timescale, from the start year to the finish year.  As each year is added, 
the relevant timeline period is found and the corresponding number of pixels are added.  A graduation 
mark is drawn on the scale, with the year number displayed for each fifth year. 

  
      if (i==periodCount)     
          stop=timelineFinish;    
      extraPixels = (stop-start)* AyearPixels[i]; 
      pixelCount=pixelCount+extraPixels;  
   } 

   xpos = 0;  
   year = timelineStart;  
   currentPeriod=1; 
   while (xpos<= pixelCount) 
   {   
      for(j=2;j<=periodCount;j++ ) 
      { 
   if (year> AperiodStartYear[j]) 
   { 
             currentPeriod=j; 
   } 
      }  
      extra = int(AyearPixels[currentPeriod]); 



 

234 
 

Web-based programming projects 

      extra = int(AyearPixels[currentPeriod]);  
 

      xpos = xpos + extra; 
      stroke(0); 
      line(xpos+xoffset+xoffset2,450,xpos+xoffset+xoffset2,455); 
      if(year%5== 0) 
      { 
   textSize(12);  
   stroke(0); 
   line(xpos+xoffset+xoffset2,450,xpos+xoffset+xoffset2,460); 
   fill(0); 
   stroke(210); 
         text(year,xpos+xoffset+xoffset2-12,476); 
      } 
      year++; 
   } 

} 
</script> 
 
 

Save the index.php file and copy it to the server.  Refresh the web page and check that a timescale is now 

displayed, beginning at the year 1700 when the History of Transport timeline begins.  

 

 

 

 

 

 

Return to the index.php file.  The next step is to allow the timeline to scroll by dragging the mouse on the 
time scale.  Add lines of program code to the drawTimeline( ) function as shown below. 

          text(year,xpos+xoffset+xoffset2-12,476); 
 } 
       year++; 
    } 

    textSize(14);  
    fill(0); 
    stroke(210); 
    text('Drag the mouse here to scroll the timeline',600,512); 
    y=mouseY;  
    if (y>440)    
    {  
  if (down==true) 
   xoffset = x - xstart;     
  if (mouseIsPressed)            
        {     
  x=mouseX;  
              if (down==false)      
              { 
                 down=true;          
                 xstart = mouseX;       
              } 
  }    
  else  
                         



 

235 
 

Chapter 5:  Historical timeline 

  else                          
 

        { 
  if (down==true)        
  {    
      down=false;         
      xoffset2=xoffset2+xoffset; 
      xoffset=0;   
  }   
  }   
    }  

} 
</script> 
 

Save index.php and copy it to the server.  Refresh the web page, then drag the mouse to the left or right at 

the point indicated below the timescale.  The time scale should now scroll.  Notice the difference in the 

year spacing for the different time periods. 

 
 
 
 

When the web page is first loaded, the offset of the time scale relative to the left edge of the sceeen is set 
to zero.  This is recorded as the variable offset2.  By varying this value, the time scale will be offset 
horizontally and a different range of years will be shown. 

When the mouse button is first pressed, the horizontal mouse position is recorded as xstart.  When the 
button is released at the end of the dragging operation, the final mouse position is recorded as x. The 
difference between these values gives the distance in pixels that the mouse has moved during the dragging 
operation, which we record as the variable offset.  This distance is then applied to the total offset, and the 
time scale is redrawn in its new horizontal position. 

The final step in creating the scrolling timeline is to change the background images as different time periods 

are dragged across the screen.  To do this, return to the index.php file and add the block of code below to 

the drawTimeline( ) function.  

    line(xpos+xoffset+xoffset2,450,xpos+xoffset+xoffset2,460); 
    fill(0); 
    stroke(210); 
          text(year,xpos+xoffset+xoffset2-12,476); 
 } 

       for(j=2;j<=periodCount;j++ ) 
 { 
    if (year==AperiodStartYear[j]) 
    { 
       loc=xpos+xoffset+xoffset2; 
       if (loc<0) 
      loc=0; 
       image(imgbk[j],loc,0); 
       textSize(20); 
       fill(255); 
       noStroke(); 
       text(AperiodName[j],loc+20,30); 
       textSize(16); 
       text(AperiodStartYear[j]+ " - "+AperiodFinishYear[j],loc+20,52); 
    } 
       } 

       year++; 
     }  



 

236 
 

Web-based programming projects 

The section of program to control the scrolling of the timescale is quite complex, so it has been illustrated 

in the flowchart below:   



 

237 
 

Chapter 5:  Historical timeline 

Save index.php and copy it to the server.  Refresh the web page, then drag the mouse to the left or right at 
the point indicated below the timescale.  The time scale should now scroll, with background images moving 
in and out of the screen display.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will now leave the timeline display temporarily and work on the entry of historical events.   

Open a blank file and add the lines of program code shown on the next page.  Save the file as addevent.php 

and copy it to the server.   

Run the web site and log-in as staff.  Go to STAFF PAGE and select the 'Add event' option.  A drop-down list 

of timelines should appear. 

 

 

 

 

 

 

 

The <body> section of the web page begins by loading records from the database to create a set of 

Timeline objects.  A loop then creates arrays of the timelineID and timelineTitle values, which are used to 

produce the drop down list. 



 

238 
 

Web-based programming projects 

 

<? 
  $r=$_REQUEST['timelineWanted']; 
  if ($r>0)  
  { 
     $timelineWanted=$r; 
     $categoryWanted=$_REQUEST['categoryWanted'];   
  } 
?> 
<html> 
 <head> 
    <title> Historical timeline </title> 
    <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  
 </head> 
 <body> 
 <? 
    include('staffMenu.php'); 
    include('Timeline.php'); 
    $count= Timeline::loadTimelines(); 
    for ($i=1; $i<=$count;$i++) 
    { 
      $timelineID[$i]=Timeline::$timelines[$i]->getTimelineID(); 
      $timelineTitle[$i]=Timeline::$timelines[$i]->getTimelineTitle(); 
    } 
 ?> 
 <h4>Add timeline event</h4> 
 <table> 
 <tr><td height=30> 
    Select timeline:</td>  
    <td> 
    <? 
 echo"<select name='timelineWanted' id='timelineWanted' 
                                          onChange=timelineSelection()>"; 
 echo"<option>";  
 for ($k=1; $k<=$count;$k++) 
 {  
    if ($timelineWanted==$timelineID[$k]) 
    { 
  $timelineIDwanted=$timelineID[$k]; 
  echo"<option value='".$timelineID[$k]."' selected>". 
                                                      $timelineTitle[$k];  
    } 
    else 
             echo"<option value='".$timelineID[$k]."'>".$timelineTitle[$k]; 
 } 
       echo"</select></td></tr> "; 
   ?>  
   </table> 

   </body> 
   </html> 

 
 

 

Go to the end of the addevent.php page file and add a timelineSelection( ) JavaScript function.  This is 

activated when a timeline is selected from the drop-down list.  The web page is then re-loaded, carrying the 

timelineID value as part of the page URL.   

  



 

239 
 

Chapter 5:  Historical timeline 

       echo"</select></td></tr> "; 
   ?>  
   </table> 

   <script> 
    function timelineSelection() 
    { 
 timelineWanted = document.getElementById("timelineWanted").value; 
 window.location.href='addevent.php?timelineWanted='+timelineWanted; 
    } 
   </script>  

   </body> 
   </html> 

 
 

The next step is to display a drop-down list of the event categories for the selected timeline.  Insert a block 

of code near the start of the addevent.php file to load the category data. 

 
  if ($r>0)  
  { 
     $timelineWanted=$r; 
     $categoryWanted=$_REQUEST['categoryWanted']; 

     include('TimelineCategory.php'); 
     $categoryCount = TimelineCategory::loadByTimelineID($timelineWanted); 
     for ($i=1;$i<=$categoryCount;$i++) 
     { 
        $AcategoryName[$i]=TimelineCategory::$categories[$i]->getCategoryName(); 
  $Asymbol[$i]=TimelineCategory::$categories[$i]->getSymbol(); 
     } 

  } 
?> 
 

Go now to the <table> block in the <body> section.  Add another drop-down list component as shown 
below.   

  
  echo"<option value='".$timelineID[$k]."'>".$timelineTitle[$k]; 
     } 
     echo"</select></td></tr> "; 
     ?>  

     <tr><td height=30>Category</td> 
     <?   
        echo"<td><select name=categoryWanted id=categoryWanted >"; 
  echo"<option>";  
  for ($h=1;$h<=$categoryCount;$h++) 
  {  
     if ($categoryWanted==$Asymbol[$h]) 
     { 
         echo"<option value='".$Asymbol[$h]."' selected>".  
                                                  $AcategoryName[$h];  
     } 
     else 
     { 
         echo"<option value='".$Asymbol[$h]."' >".$AcategoryName[$h];  
     } 
  }  
  echo"</select></td></tr>"; 
     ?> 

    </table>   



 

240 
 

Web-based programming projects 

Save the addevent.php file and copy it to the server.  Refresh the web page and select the History of 

Transport timeline from the first drop-down list.  Check that the correct set of categories is displayed.  

 
 
 
 
 
 
 
 
 
 

Re-open the addevent.php file.  Add further input boxes to the <table> as shown below. 

The historical event can be recorded as occurring in a particular year such as the first commercial flight of 
Concorde, or over a period of years such as the construction of the Channel Tunnel.  The title and a text 
description of the event are then added.    

    echo"<option value='".$Asymbol[$h]."' >".$AcategoryName[$h];  
 } 
    }  
    echo"</select></td></tr>"; 
?>  

<tr><td height=30> 
   Start year</td>  
   <? 
       echo"<td><input type=text name='startYear' id='startYear'      
          value='$startYear'> Finish year (if different) <input type=text 
           id='finishYear' name='finishYear'value='$finishYear'></td></tr>"; 
   ?> 
   <tr><td height=40> 
   Event title</td> 
   <? 
      echo"<td><textarea cols=70 rows=2 name='eventTitle' id='eventTitle'>"; 
      echo $eventTitle;  
      echo"</textarea></td></tr>"; 
   ?> 
   <tr><td valign='top' height=220> 
   Description</td> 
   <? 
      echo"<td><textarea cols=70 rows=12 name='description' id='description'>"; 
      echo $description; 
      echo"</textarea></td></tr>"; 
   ?>    
   <tr><td valign='top'>  Image</td> 
   <td><table border="0" cellpadding="10"> 
   <tr><td><input type="file" name="fileToUpload" id="fileToUpload">   
   <input type="submit" value="Upload Image" name="submit">  
   <p> 
   <? 
        echo"<img src='uploads/$imageFile' width='500'>"; 
  echo"<p><input type='hidden' name='imageFile' id='imageFile' 
                                                     value= '$imageFile' >"; 
   ?> 
   </td></tr> 
  </table> 
  <tr><td></td><td><button type="button" onclick="button_handler()"> 
                                        Save record</button></td></tr> 

</table>   



 

241 
 

Chapter 5:  Historical timeline 

Save the addevent.php file and copy it to the server.  Refresh the web page and check that input boxes are 

displayed correctly. 

 

 

 

 

 

 

 

 

 

The final stage in entering a historical event record is to upload a picture image for display on the timeline.  
The user will first click the 'Choose file' button to open a file selection window.  They will then click the 
'Upload image' button to transfer the file to the uploads folder on the server.  

The file upload will be handled by a separate web page.  Open a blank file and add the lines of program 

code shown below.  Save the file as upload2.php and copy it to the server. 

         
        <? 

   session_start(); 
   $timelineWanted = $_REQUEST['timelineWanted']; 
   $categoryWanted = $_REQUEST['categoryWanted']; 
   $startYear = $_REQUEST["startYear"]; 
   $finishYear=$_REQUEST['finishYear']; 
   $eventTitle=$_REQUEST['eventTitle']; 
   $description=$_REQUEST['description'];    
   $_SESSION["imagefile"]= $imageFile; 
   $_SESSION["startYear"] = $startYear; 
   $_SESSION["finishYear"]= $finishYear; 
   $_SESSION["eventTitle"]= $eventTitle; 
   $_SESSION["description"]= $description; 
   $target_dir = "uploads/"; 
   $target_file = $target_dir . basename($_FILES["fileToUpload"]["name"]); 
   $imageFileType = strtolower(pathinfo($target_file,PATHINFO_EXTENSION)); 
   move_uploaded_file($_FILES["fileToUpload"]["tmp_name"], $target_file);  
   $imageFile = basename( $_FILES["fileToUpload"]["name"]);  
   header("Location: addevent.php?imageFile=$imageFile&timelineWanted=  
                           $timelineWanted&categoryWanted=$categoryWanted"); 
?> 
 

Re-open the addevent.php file.  Add a PHP <form> command before the <table> begins.  

 

<h4>Add timeline event</h4> 

<? 
  echo"<form action='upload2.php?timelineWanted=".$timelineWanted.  
    "' name='itemEntryForm' method='post' enctype='multipart/form-data'>"; 
?> 

<table> 



 

242 
 

Web-based programming projects 

Add a command to end the form after the final table is closed. 
 
       </table> 
  <tr><td><td><button type="button" onclick="button_handler()"> 
                                                   Save record</button> 
  </table> 

  </form> 

  <script>  
    function timelineSelection() 
 
 

Save the addevent.php file and copy it to the server.  Refresh the web page and enter a small amount of 
sample text in the input boxes. Click the 'Choose file' button and select a picture image (.jpg or .png).  Now 
click the 'Upload image' button. Check that the picture file has been uploaded to the uploads sub-folder on 
the server. 

You will notice that the picture and test data entered earlier in the input boxes has not been re-loaded.  
Add the lines of program code shown below to do this.  Begin by adding a 'session_start' command to 
addevent.php to allow session variables to be accessed.  This must be included as the first line of the 
program. 

<? 

  session_start(); 

  $r=$_REQUEST['timelineWanted']; 
  if ($r>0)  
  { 
     $timelineWanted=$r; 
     $categoryWanted=$_REQUEST['categoryWanted']; 
 
 

Commands can then be inserted to collect data that was stored previously as session variables.  Add the 
lines of program code below.  Save the addevent.php file and copy it to the server.  Refresh the page and 
the text should now be displayed. 

     include('TimelineCategory.php'); 
     $categoryCount = TimelineCategory::loadByTimelineID($timelineWanted); 
     for ($i=1;$i<=$categoryCount;$i++) 
     { 
        $AcategoryName[$i]=TimelineCategory::$categories[$i]->getCategoryName(); 
  $Asymbol[$i]=TimelineCategory::$categories[$i]->getSymbol(); 
     }  

     $imageFile=$_REQUEST['imageFile']; 
     $startYear = $_SESSION["startYear"] ; 
     $finishYear = $_SESSION["finishYear"] ; 
     $eventTitle = $_SESSION["eventTitle"] ; 
     $description = $_SESSION["description"] ;   

}     
?> 
<html> 
 <head> 
  <title> Historical timeline </title> 
 
 

A database table will be required to store timeline event records.   



 

243 
 

Chapter 5:  Historical timeline 

Go to the PHP MyAdmin web page, list the tables in the database, and select the 'new' option. Set up a 
table with the name timelineEvent and add the fields shown below.   

The eventID field should be specified as the primary key and set to auto-increment as records are added.  
The maximum size of the file name which can be stored in the image field has been set to 30 characters. 

 

 

 

 

 

 

 

 

 

 

 

A TimelineEvent class can now be created to handle database operations.  Open a blank file and add the 
lines of program code in the two boxes below.  The attributes of a TimelineEvent object are defined, then a 
constructor method is added.  We have also included a method to store event records into the database. 

 
<? 
class TimelineEvent 
{   
    public static $events=array(); 
    private $eventID; 
    private $timelineID; 
    private $startYear; 
    private $finishYear; 
    private $eventTitle; 
    private $category; 
    private $eventText; 
    private $image; 
    private $display; 
    private $submissionDate;  
    private $contributor; 

    function __construct($eventID,$timelineID,$startYear,$finishYear, 
                             $eventTitle, $category,$eventText,$image, 
                                  $display,$submissionDate,$contributor) 
    { 
  $this->eventID = $eventID; 
  $this->timelineID = $timelineID; 
  $this->startYear = $startYear;  
  $this->finishYear = $finishYear;  
  $this->eventTitle = $eventTitle; 
  $this->category = $category;  
  $this->eventText = $eventText;  
  $this->image = $image;  
  $this->display = $display; 
  $this->submissionDate = $submissionDate;  
  $this->contributor = $contributor;  
    } 



 

244 
 

Web-based programming projects 

 
 

    public static function addEvent($timelineID,$startYear,$finishYear,   
                     $eventTitle, $category,$eventText,$image, $display, 
                                             $submissionDate,$contributor) 
    {   
       include('user.inc');  
       $conn = new mysqli(localhost, $username, $password, $database); 
       if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
 $query="INSERT INTO timelineEvent VALUES (' ','$timelineID', 
         '$startYear','$finishYear','$eventTitle','$category','$eventText', 
                     '$image','$display','$submissionDate','$contributor')"; 
 $result=mysqli_query($conn, $query); 
       mysqli_close($conn);     
   } 
 
} 
?> 
 

Save the file as TimelineEvent.php and copy it to the server. 

We can now use the addEvent( ) method to save an event record into the database table.  Return to the 

addevent.php file and add a Javascript function which will be called when the 'Save record' button is 

clicked.  Save the addevent.php file and copy it to the server. 

 
<script>  
function timelineSelection() 

 {       
   timelineWanted = document.getElementById("timelineWanted").value;   
   window.location.href='addevent.php?timelineWanted='+timelineWanted; 
} 

function button_handler() 
{ 
   startYear = document.getElementById("startYear").value; 
   finishYear = document.getElementById("finishYear").value; 
   eventTitle = document.getElementById("eventTitle").value; 
   category = document.getElementById("categoryWanted").value; 
   description = document.getElementById("description").value; 
   imageFile = document.getElementById("imageFile").value; 
   var error=false; 
   var n = eventTitle.length;  
   if (n<2) 
   { 
 alert("An event title must be entered"); 
 error=true; 
   } 
   if (error==false) 
   { 
 timelineWanted = document.getElementById("timelineWanted").value; 
       destination = 'saveEvent.php?startYear='+startYear+'&finishYear='+ 
           finishYear+'&category='+ category+'&eventTitle='+ eventTitle + 
                '&description=' + description+'&imagefile=' + imageFile + 
                                      '&timelineWanted=' + timelineWanted; 
       window.location.href= destination; 
   } 
} 

</script>  
</body> 
</html> 



 

245 
 

Chapter 5:  Historical timeline 

The function begins by carrying out a presence check on the Title field, to ensure that this has not been left 
blank.  Similar validation could be carried out for other fields if required. If no error is detected, the 
program will proceed to another web page where the record will be saved.  The field values are carried as 
attachments to the URL web page address. 

Open a new blank file and add the lines of program code shown below.  Save the file as saveEvent.php and 
copy it to the server. 

 

<? 
   session_start();   
   $startYear=$_REQUEST['startYear']; 
   $finishYear=$_REQUEST['finishYear']; 
   $eventTitle=$_REQUEST['eventTitle']; 
   $description=$_REQUEST['description']; 
   $imageFile=$_REQUEST['imagefile']; 
   $categoryWanted=$_REQUEST['category']; 
   $timelineWanted=$_REQUEST['timelineWanted'];    
   $userWanted=$_SESSION['user']; 
   $status=$_SESSION['login']; 
   if ($status=='member') 
   { 
      $displayCode=1; 
   } 
   else 
   { 
      $displayCode=0;  
   } 
   $date = date('d/m/Y'); 
   $eventTitle = str_replace("'","`",$eventTitle); 
   $description = str_replace("'","`",$description); 
?> 
<html> 
 <head> 
  <title> Historical timeline </title> 
 </head> 
 <body>  
 <?    
   include('TimelineEvent.php');       
   TimelineEvent::addEvent($timelineWanted,$startYear,$finishYear,  
                 $eventTitle,$categoryWanted,$description, $imageFile, 
                                       $displayCode,$date,$userWanted); 
   header('Location: index.php'); 
 ?>   
</body> 
</html>  
 
 

 

The page begins by collecting most of the data fields required for the timeline event record. The status field 
is set according to whether the record was entered by staff and can be immediately displayed, or whether 
it was entered by society member and needs to be approved by staff before display.   

Run the website, logging-in as staff and go to STAFF PAGE.  Enter a complete event record for the History of 
Transport timeline, such as the first commercial flight of Concorde in 1978, as in the example below.  Click 
the 'Save record' button. 

 



 

246 
 

Web-based programming projects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Go to the PHP MyAdmin web page and open the timelineEvent table.  Check that the record has been 

saved correctly. 

Return to the historical timeline web site and enter more events for the History of Transport timeline.  It 
will be important to check that the timeline can correctly display more than one event for the same year.  
With this in mind, create test data for two separate events with the same year date.   

We can now return to the timeline to display the historical events.  However, before doing this it will be 
necessary to add methods to the TimelineEvent class.  We will need to reload the event records and create 
a set of TimelineEvent objects, and then access the attributes of these objects. 

Re-open the TimelineEvent.php class file.  Add the loadByTimelineID( ) and get( ) methods shown below. 

Save the TimelineEvent.php file and copy it to the server.    



 

247 
 

Chapter 5:  Historical timeline 

    
   public static function loadByTimelineID($timelineIDwanted) 
   {   
 include ('user.inc'); 
 $conn = new mysqli(localhost, $username, $password, $database); 
       if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
 $query="SELECT * FROM timelineEvent WHERE timelineID = ".  
                           $timelineIDwanted." ORDER BY startYear"; 
 $result=mysqli_query($conn, $query); 
       $num=mysqli_num_rows($result);    
       mysqli_close($conn);  
 $i=1;  
 while ($i <= $num)  
 { 
          $row=mysqli_fetch_assoc($result); 
    $eventID=$row["eventID"]; 
    $timelineID=$row["timelineID"]; 
    $startYear=$row["startYear"]; 
    $finishYear=$row["finishYear"]; 
    $eventTitle=$row["eventTitle"]; 
    $category=$row["category"]; 
    $eventText=$row["eventText"]; 
    $image=$row["image"]; 
    $display=$row["display"]; 
    $submissionDate=$row["submissionDate"]; 
    $contributor=$row["contributor"];   
    TimelineEvent::$events[$i] = new TimelineEvent($eventID,  
              $timelineID,$startYear,$finishYear,$eventTitle,$category,                                                 
               $eventText,$image,$display,$submissionDate,$contributor); 
    $i++; 
 } 
 return $num; 
    } 

     public function getEventID(){return $this->eventID;} 
     public function getTimelineID(){return $this->timelineID;} 
     public function getStartYear(){return $this->startYear;} 
     public function getFinishYear(){return $this->finishYear;} 
     public function getEventTitle(){return $this->eventTitle;} 
    public function getCategory(){return $this->category;} 
     public function getEventText(){return $this->eventText;} 
     public function getImage(){return $this->image;} 
     public function getDisplay(){return $this->display;} 
     public function getSubmissionDate(){return $this->submissionDate;} 
     public function getContributor(){return $this->contributor;} 
 
} 
?> 
 

The next step is to add program code to the index.php file to display historical events.  The program 

sequence is illustrated in the flowchart below. 

A loop operates for each of the historical events for the selected timeline.  Only the events which have 
been approved for display (with status = 0) will be processed.   

If only a start year has been entered for the event, this is used as the display year.  If both start and finish 
years have been given, then the display year is taken as the mid-point. 

The program works through each of the timeline periods in chronological order.  If the display year lies 
within or after the current period, then the necessay number of pixels are added to the display position.  
The current timeline scroll position is then applied to this total, so the display position is recalculated 
relative to the left side of the screen display.     



 

248 
 

Web-based programming projects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

249 
 

Chapter 5:  Historical timeline 

Previously processed events are checked to determine whether any occur in the same year as the current 
event.  If so, the display position of the current event symbol is adjusted so that it will lie vertically above 
any previous symbols.  The symbol is then plotted on the graphical display. 

 

 

 

 

 

 

 

 

 

 

 

The position of the mouse pointer is then checked.  If it is close to an event symbol, a call-out box is drawn 
and the event title displayed.  

 

 

 

 

 

 

 

If the mouse button is pressed, then two possibilities exist: 

 The user has clicked on the event symbol.  A display panel should then open. 

 

 

 

 

 

 

 

 



 

250 
 

Web-based programming projects 

 A second possibility is that a display panel is already open, and the user has clicked on the 'close' 
icon in the top right hand corner.  In this case, the panel will not be displayed.  

Begin by producing a 'close' icon which will be displayed in the top right hand corner of the event 

information panel.  This should be approximately 24 pixels square.                       

 

Save the graphic image as 'close.png' and copy it to the timeline folder on the server. 

Re-open the index.php file.  Add lines of program code at the start of the <body> section to include the 

TimelineEvent and TimelineCategory class files.  

<body> 
 <?  
  include('Timeline.php'); 

  include('TimelineEvent.php'); 
  include('TimelineCategory.php'); 

  $timelineCount=Timeline::loadTimelines(); 
  $timelineWanted = Timeline::$timelines[1]->getTimelineID(); 
  $timelineID=$_REQUEST['timelineWanted']; 
 
 

Add program code as shown in the first box below.  This will load the event and category records for the 
current timeline and create sets of objects.   Loops in the program then access each of the objects by 
means of get( ) methods to obtain the attribute values.  These values are then stored in a series of arrays. 

 

  $timelineWanted = Timeline::$timelines[1]->getTimelineID(); 
  $timelineID=$_REQUEST['timelineWanted']; 
  if ($timelineID>0) 
        $timelineWanted = $timelineID;  

  $eventCount = TimelineEvent::loadByTimelineID($timelineWanted); 
  for ($i=1;$i<=$eventCount;$i++) 
  { 
     $title = TimelineEvent::$events[$i]->getEventTitle();      
     $AsymbolCategory[$i]=TimelineEvent::$events[$i]->getCategory();  
     $AdisplayStatus[$i]=TimelineEvent::$events[$i]->getDisplay(); 
     $AstartYear[$i]=TimelineEvent::$events[$i]->getStartYear(); 
     $AfinishYear[$i]=TimelineEvent::$events[$i]->getFinishYear(); 
     $AeventTitle[$i]=TimelineEvent::$events[$i]->getEventTitle(); 
     $AeventText[$i]=TimelineEvent::$events[$i]->getEventText(); 
     $Aimage[$i]=TimelineEvent::$events[$i]->getImage();   
   } 
   $categoryCount=TimelineCategory::loadByTimelineID($timelineWanted); 
   for ($i=1;$i<=$categoryCount;$i++) 
   { 
     $AcategoryName[$i]=TimelineCategory::$categories[$i]->getCategoryName(); 
   } 

   echo"<table class=menu>";  
   echo"<tr><th class=menu>"; 
 

Go next to the <script> block which follows the PHP program code.  Add the series of lines of code in the 

second box below.  These will convert PHP variables to JavaScript variables for use in drawing the timeline 

graphics.  The JSON encode function allows PHP arrays to be transferred to JavaScript.  

  



 

251 
 

Chapter 5:  Historical timeline 

  var xoffset=0; 
  var xoffset2=0;  
  var down=false; 

  var eventCount=<? echo $eventCount ?>; 
  var AsymbolCategory=<?php echo json_encode($AsymbolCategory) ?>; 
  var AdisplayStatus=<?php echo json_encode($AdisplayStatus) ?>; 
  var AstartYear=<?php echo json_encode($AstartYear) ?>; 
  var AfinishYear=<?php echo json_encode($AfinishYear) ?>; 
  let imageYear = []; 
  let imagePosition = []; 
  var AeventTitle=<?php echo json_encode($AeventTitle) ?>; 
  let showInformation= []; 
  var AeventText=<?php echo json_encode($AeventText) ?>; 
  var Aimage=<?php echo json_encode($Aimage) ?>; 
  let picture= []; 
  var AcategoryName=<?php echo json_encode($AcategoryName) ?>; 
  var categoryCount=<? echo $categoryCount ?>; 

 var periodCount=<? echo $periodCount ?>; 
 var Abackground = <?php echo json_encode($Abackground) ?>; 

 

Go to the <script> block and locate the preload( ) function.  Add lines of code which will download the 
'close' icon and the picture images for the current timeline, so that they are immediately available when 
the program starts. 

 function preload()  
 { 
   for (i=1;i<=periodCount;i++ ) 
   {  
      filename= Abackground[i]; 
      imgbk[i]=loadImage('backgrounds/'+filename); 
   } 

   close=loadImage("close.png"); 
   for (i=1;i<=eventCount;i++ ) 
   { 
    picture[i]=loadImage("uploads/"+Aimage[i]); 
   } 

 } 
 
 

Within the draw( ) function, add a call to a function showEvents( ).  Set up the showEvents( ) function 
below the draw( ) function. 

function setup() 
{ 
   createCanvas(1200,540); 
   background(210);  
} 
function draw() 
{   
       background(210); 
 drawTimeline(); 

 showEvents(); 

} 
 
function showEvents() 
{ 
} 

function drawTimeline() 
{ 

 



 

252 
 

Web-based programming projects 

Within the showEvents( ) function, create a loop which will operate for each of the historical events in the 

current timeline.  Add a conditional block, which will only operate if the event has a status code of zero, 

meaning that it has been approved for display on the web page.  

 
function showEvents() 
{ 

   x=mouseX; 
   y=mouseY;   
   for (i=0;i<=eventCount;i++ ) 
   { 
    offset=0; 
    fill(245,246,206);     
    code=int(AsymbolCategory[i]); 
    if (AdisplayStatus[i]==0) 
    { 
      
    } 
    } 

} 
 

We now begin the calculation of the event's position along the timeline. If both start and finish years are 
recorded for the event, the event year is taken as the average of these. The first historical period is then 
processed.  The event will be within or after this period.  The appropriate number of years is calculated and 
converted to a distance in pixels along the timescale.   Add the lines of program code shown below. 

   fill(245,246,206);     
   code=int(AsymbolCategory[i]); 
   if (AdisplayStatus[i]==0) 
   { 

 year = int(AstartYear[i]);  
 if (AfinishYear[i]>0) 
 { 
     year = int((int(AstartYear[i])+int(AfinishYear[i]))/2); 
 } 
 extraYears = year-timelineStart;      
 lastYear=AperiodFinishYear[1]; 
 if (year<AperiodFinishYear[1]) 
 { 
    lastYear=year; 
 } 
 includeYears = int(lastYear-timelineStart); 
       xpos = int(includeYears * AyearPixels[1]); 
  
   } 
 

 

A loop is then used to check each of the remaining historical periods.  If the event lies within or after a 
period, the number of years to be included is calculated and the appropriate number of pixels added to the 
position of the event along the timeline.  Add the lines of program code below. 

  



 

253 
 

Chapter 5:  Historical timeline 

           if (year<AperiodFinishYear[1]) 
 { 
    lastYear=year; 
 } 
 includeYears = int(lastYear-timelineStart); 
 xpos = int(includeYears * AyearPixels[1]); 

       for (j=2;j<=periodCount ;j++ ) 
 { 
    if (year>AperiodStartYear[j]) 
    { 
  lastYear=AperiodFinishYear[j]; 
  if (year<AperiodFinishYear[j]) 
  { 
      lastYear=year; 
  } 
  includeYears = int(lastYear-AperiodStartYear[j]); 
  xpos = xpos +  int(includeYears * AyearPixels[j]); 
     } 
 } 

   } 
 

We now know the horizontal position of the event along the timeline. It is just necessary to check whether 
more than one event is to be displayed for the same year; in this case, the event symbols must be offset 
vertically so that they remain separate.  Add the lines of program code below to check for mutliple events 
in a year and apply the offset. 

 
 includeYears = int(lastYear-AperiodStartYear[j]); 
 xpos = xpos +  int(includeYears * AyearPixels[j]); 
    } 
 } 

 loc=xpos+xoffset+xoffset2+32; 
 loc=loc-int(20-AyearPixels[1]);   
 imageYear[i]=year;   
 var previousCount=0; 
 for (p=0;p<i;p++) 
 { 
    if (imageYear[p]==imageYear[i]) 
    { 
  previousCount++;    
    } 
 } 
 imagePosition[i]=previousCount; 
 var offset=previousCount*30; 

} 

 

A symbol can now be plotted at the appropriate point on the timeline for the historical event.  A set of six 

geometrical symbols has been selected: 

   
 

 

Add lines of program code to display the correct symbol according to the event's category. 
  

1:                                               3:                                             5: 

2:                                               4:                                             6:               



 

254 
 

Web-based programming projects 

 
 
 imagePosition[i]=previousCount; 
 var offset=previousCount*30; 
 
 stroke(0); 
 switch (code)  
 { 
    case 1: ellipse(loc-12,410-offset-5,12,12); break; 
    case 2: triangle(loc-16,410-offset-12,loc-4,410-offset-12,loc-10,410-offset);   
            break; 
    case 3: triangle(loc-16,410-offset,loc-4,410-offset,loc-10,410-offset-12); 
            break; 
    case 4: rect(loc-16,410-offset-12,12,12);break; 
    case 5: textSize(44); strokeWeight(2); 
         text('*',loc-22,410-offset+20); strokeWeight(1);break; 
    case 6: arc(loc-17,410-offset-10,20,20,0,HALF_PI); break; 
 }  
 textSize(14); 
 noStroke(); 
 text(year,loc,390); 

} 
 
             

Save the index.php file and copy it to the server.  Run the website and display the History of Transport 

timeline.  Drag the mouse to scroll the timeline.  Symbols and dates should be displayed at the correct 

positions for the historical events entered.  Check that events occurring in the same year are shown as 

separate symbols. 

 
 
 
 
 

 

 

   

Re-load the index.php file and return to the showEvents( ) function.  Add the lines of program code shown 

in the two boxes below: 

   case 5: textSize(44); strokeWeight(2); 
        text('*',loc-22,410-offset+20); strokeWeight(1);break; 
   case 6: arc(loc-17,410-offset-10,20,20,0,HALF_PI); break; 
}  
textSize(14); 
noStroke(); 
text(year,loc,390);  

if ((y>395-offset)&&(y<415-offset)) 
{             
    if ((x>loc-25)&&(x<loc+5)) 
    {              
  if (loc>600) 
  { 
     x2=loc-70; 
     x3=loc-90; 
     fill(245,246,206); 
     stroke(250,219,103); 
     triangle(loc-14, 410-offset-8, x2, 310-offset, x3, 310-offset);   



 

255 
 

Chapter 5:  Historical timeline 

           triangle(loc-14, 410-offset-8, x2, 310-offset, x3, 310-offset);  

     rect(loc-200,240-offset,250,72,10); 
     fill(0); 
     noStroke(); 
     textSize(14); 
     text(AeventTitle[i],loc-190,255-offset,230,80); 
   } 
   else 
   { 
      x2=loc+80; 
      x3=loc+60; 
      fill(245,246,206); 
      stroke(250,219,103); 
      triangle(loc-10, 410-offset-8, x2, 310-offset, x3, 310-offset); 
      rect(loc-50,240-offset,250,72,10); 
          fill(0); 
      noStroke(); 
      textSize(14); 
      text(AeventTitle[i],loc-40,255-offset,230,80);     
   }    
     }     
 } 

} 
 

Save the index.php file and copy it to the server.  Run the website and display the History of Transport 
timeline.  Scroll the timeline until an event symbol is visible, then move the mouse over the symbol.  The 
event title should appear.  This will be positioned to the right of the date when the event symbol occurs on 
the left of the screen display, and vice versa.  This avoids the call-out box disappearing off the page. 

 

 

 

 

 

 

 

 

Re-load the index.php file, return to the showEvents( ) function and add the lines of program code below.  
These record if the mouse is above an event symbol and the button is also pressed.    

  
       textSize(14); 
  text(AeventTitle[i],loc-40,255-offset,230,80); 
     } 

     fill(245,246,206); 
     stroke(250,219,103); 
     if (mouseIsPressed) 
     { 
   showInformation[i]=true; 
     } 

          }     
       } 



 

256 
 

Web-based programming projects 

When the mouse button is pressed on an event symbol, an information panel will be displayed.  Add the 

lines of program code below to do this. 

  
     if (mouseIsPressed) 
     { 
   showInformation[i]=true; 
     } 

          }     
       } 
     } 
   } 
 
   for (i=1;i<=eventCount;i++ ) 
   { 
 if (showInformation[i]==true) 
       { 
     stroke(0); 
     fill(255); 
     rect(50,20,900,495,10);   
           image(close,910,30); 
           fill(0); 
     stroke(255); 
     textSize(14); 
     textStyle(BOLD); 
     dateWanted = AstartYear[i];   
     if (int(AfinishYear[i])>1000) 
     { 
               dateWanted = dateWanted + " - " + AfinishYear[i]; 
     } 
           text(dateWanted,100,80,400,200); 
           text(AeventTitle[i],100,120,400,200); 
     textSize(14); 
     textStyle(NORMAL); 
           text(AeventText[i],100,170,400,300); 
     image(picture[i],560,120,340,280);  
  } 
    } 
    textStyle(NORMAL); 

} 
 
 

Save the index.php file and copy it to the server.  Run the website and display the History of Transport 
timeline.  Scroll the timeline until an event symbol is visible, then click the mouse button on the symbol.  
The program creates a white panel above the timeline background.  The 'close' icon is added in the top 
corner, as in the illustration below. The year or year range for the event is displayed, along with the event 
title, descriptive text and illustration.   

 

 

 

 

 

 

 



 

257 
 

Chapter 5:  Historical timeline 

The event title and text description have been transferred to JavaScript variables using the JSON encode 
function.  Whilst this works correctly for alphanumeric characters and standard punctuation, problems may 
occur with special characters.  Errors can be caused by accented letters and keyboard characters including, 
surprisingly, the £ or — symbol.  If text fails to appear, check for special characters and remove or replace 
them if necessary. 

Return to the index.php file and add the lines of program code below to the showEvents( ) function. 

     textSize(14); 
     textStyle(NORMAL); 
           text(AeventText[i],100,170,400,300); 
     image(picture[i],560,120,340,280);  
 } 
   } 

   if (mouseIsPressed) 
   {    
 x=mouseX; 
 y=mouseY; 
 if ((x>910)&&(x<936)&&(y>30)&&(y<56)) 
 {   
     for (i=1;i<=eventCount;i++ ) 
           { 
               showInformation[i]=false; 
     }               
 }   
   }  

   textStyle(NORMAL); 
} 
 

Save the index.php file and copy it to the server.  Run the website and display an event panel for the 
History of Transport timeline.  Check that the panel closes when the 'close' icon is clicked.  

The only task remaining on the timeline display is to provide a key to the event category symbols.  Return 
to the index.php file and add the lines of program code in the two boxes below to the drawTimeline( ) 
function to produce the key. 

            noStroke(); 

     text(AperiodName[j],loc+20,30); 
     textSize(16); 
     text(AperiodStartYear[j]+ " - "+AperiodFinishYear[j],loc+20,52); 
   } 
} 
year++; 

} 

noStroke(); 
var up=500; 
var across=60;  
for (h=1;h<=categoryCount;h++) 
{ 

fill(0); 
noStroke(); 
textSize(12); 
text(AcategoryName[h],across,up);   
fill(245,246,206); 
stroke(0);  
switch (h)  
{ 
   case 1: ellipse(across-12,up-5,10,10); break; 
  



 

258 
 

Web-based programming projects 

 
  case 1: ellipse(across-12,up-5,10,10); break; 
 
   case 2: triangle(across-16,up-10,across-4,up-10,across-10,up); break; 
   case 3: triangle(across-16,up,across-4,up,across-10,up-10); break; 
   case 4: rect(across-16,up-10,10,10);break; 
   case 5: textSize(44); strokeWeight(2); 
         text('*',across-22,up+20); strokeWeight(1);break; 
   case 6: arc(across-17,up-10,20,20,0,HALF_PI); break; 
}   
up=up+20; 
if (up>520) 
{ 
   up=500; 
   across=across+160; 
} 

}  

textSize(14);  
fill(0); 
stroke(210); 
text('Drag the mouse here to scroll the timeline',600,512); 
 
 

Save the index.php file and copy it to the server.  Run the website and display the History of Transport 

timeline.  Check that a correct set of captions are displayed for the category symbols. 

 

 

 
 
 

This completes the work on the timeline display.   

In addition to the staff of the history society, members are also permitted to add events to timelines.  We 
will work on this facility next.  Begin by opening a blank file and adding the lines of program code below.  
These will create a member menu bar which includes an option to add a timeline event. 

 

<?  
    echo"<table class=menu>";  
    echo"<tr><th class=menu>"; 
    echo"<th class=menu>";   
    echo"<a href='index.php'>"; 
    echo"View timeline</a>"; 

    echo"<th class=menu>"; 
    echo"<a href='memberArticles.php'>"; 
    echo"Member page</a>"; 

    echo"<th class=menu>"; 
    echo"<a href='addevent.php'>"; 
    echo"Add event</a>"; 

    echo"<th class=menu>"; 
    echo"<a href='login.php'>"; 
    echo"LOG OUT</a>";  

    echo"</table>";  
?> 
 



 

259 
 

Chapter 5:  Historical timeline 

Save the file as memberMenu.php and copy it to the server. 
 

Open another blank file and add the lines of program code below. Save the file as memberArticles.php and 

copy it to the server.  This creates a member page which can be accessed from the timeline display.   

<? 
   session_start(); 
   $userWanted=$_SESSION['user']; 
?> 
<html> 
 <head> 
 <title> Historical timeline </title> 
 <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  
 </head> 
 <body> 
 <? 
   include('memberMenu.php');  
   include('TimelineLogin.php'); 
   TimelineLogin::loadTimelineUsers(); 
   $name=TimelineLogin::nameOfUser($userWanted); 
   echo"<h3>Member: ".$name."</h3>"; 
 ?> 
 </body> 
 </html> 

 

The page will display the name of the member.  To do this, an additional method must be added to the 

TimelineLogin class.   Open the file TimelineLogin.php and add the nameOfUser( ) method shown below. 

 
 
 public static function nameOfUser($userWanted) 
 {  
    $answer=""; 
    for ($i=1;$i<=TimelineLogin::$userCount;$i++) 
    {        
       if ($userWanted==TimelineLogin::$timelineUser[$i]->user) 
       {            
            $forename = TimelineLogin::$timelineUser[$i]->forename;  
            $surname = TimelineLogin::$timelineUser[$i]->surname; 
            $answer = $forename." ".$surname; 
       } 
    }       
    return $answer; 
 } 

 } 
 ?> 
 

Save the TimelineLogin.php file and copy it to the server. 

Run the website.  Log-in or register as a member.  From the menu above the timeline display, select the 

MEMBER PAGE option.  Check that the menu bar and member's name are displayed, as in the example 

below. 

 
 
 
 



 

260 
 

Web-based programming projects 

Members will be able to enter historical events using the same input page as the staff.  However, the page 
should display the member menu rather than the staff menu.  Open the addEvent.php file and replace the 
include('staffMenu.php') command with the block of program code below.  

 
  <title> Historical timeline </title> 
  <link rel="Stylesheet" type="text/css" href="styleSheet.css" />  
 </head> 
 <body> 
 <? 

 $login = $_SESSION['login']; 
 if ($login =='staff') 
 { 
  include('staffMenu.php'); 
 } 
 else 
 { 
  include('memberMenu.php'); 
 } 

  include('Timeline.php'); 
  $count= Timeline::loadTimelines(); 
 

Save the addEvent.php file and copy it to the server.  Return to the member web page and select the 'Add 

event' menu option.  The input page should open as before, but now displaying the member menu bar.  

Add a historical event record for the History of Transport timeline, as in this example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click the 'Save record' button.  Check that the image selected has been copied to the uploads folder on the 
server.   

Go to the PHP MyAdmin web page and check that the event record has been added correctly to the 
timelineEvent table in the database.  The value for the display field should be set to 1, indicating that the 
record needs to be approved by staff before it is displayed on the timeline. 



 

261 
 

Chapter 5:  Historical timeline 

We will now produce a listing for the member to show the historical events which they have submitted.  To 

do this, an additional method needs to be added to the TimelineEvent class.  Open the TimelineEvent.php 

file and add a loadEvents( ) method as shown below.  This method will load all timelineEvent records and 

create a corresponding set of objects. 

 
  public static function loadEvents() 
  {  
   include ('user.inc'); 
   $conn = new mysqli(localhost, $username, $password, $database); 
     if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
   $query="SELECT * FROM timelineEvent ORDER BY startYear"; 
   $result=mysqli_query($conn, $query); 
     $num=mysqli_num_rows($result);    
     mysqli_close($conn);    
     $i=1;  
   while ($i <= $num)  
   { 
        $row=mysqli_fetch_assoc($result);  
      $eventID=$row["eventID"]; 
      $timelineID=$row["timelineID"]; 
      $startYear=$row["startYear"]; 
      $finishYear=$row["finishYear"]; 
      $eventTitle=$row["eventTitle"]; 
      $category=$row["category"]; 
      $eventText=$row["eventText"]; 
      $image=$row["image"]; 
      $display=$row["display"]; 
      $submissionDate=$row["submissionDate"]; 
      $contributor=$row["contributor"];  
      TimelineEvent::$events[$i] = new TimelineEvent($eventID,$timelineID,  
                      $startYear,$finishYear,$eventTitle,$category,$eventText,  
                                $image,$display,$submissionDate,$contributor);  
      $i++; 
   } 
   return $num; 
  } 

} 
?> 
 

Save the TimelineEvent.php file and copy it to the server.  

Return to memberArticles.php and add the block of program code shown on the next page.  This loads the 
set of timelineEvent objects, then selects the events submitted by the member.  Details are displayed in a 
table, with a message indicating whether the record has been published or is awaiting approval. 

Save the updated memberArticles.php file and copy it to the server.  Run the website and log-in as a 
member.  Go to the member page and check that a table displays the article submitted by the member.  
Enter several more timeline events for this member.  When viewed in the table, these should all be listed as 
'awaiting approval' as in the example shown below.  

 
 
 
 
 

  



 

262 
 

Web-based programming projects 

<body> 
<? 
  include('memberMenu.php');  
  include('TimelineLogin.php'); 
  TimelineLogin::loadTimelineUsers(); 
  $name=TimelineLogin::nameOfUser($userWanted); 
  echo"<h3>Member: ".$name."</h3>"; 
?> 

<br> 
Your articles: 
<br><br>  
<table cellpadding=5 > 
<? 
   echo"<tr><th class = outline>Date</th>"; 
   echo"<th class = outline>Event</th>"; 
   echo"<th class = outline>Date submitted</th>";  
   echo"<th class = outline>Status</th></tr>";  
   include('TimelineEvent.php'); 
   $count = TimelineEvent::loadEvents();    
   for ($i=1; $i<=$count; $i++) 
   {          
    $contributor = TimelineEvent::$events[$i]->getContributor(); 
    if ($contributor==$userWanted) 
    { 
  echo"<tr>"; 
  echo"<td>".TimelineEvent::$events[$i]->getStartYear()."</th>"; 
  echo"<td>".TimelineEvent::$events[$i]->getEventTitle()."</th>"; 
  echo"<td>".TimelineEvent::$events[$i]->getSubmissionDate()."</th>"; 
  $status = TimelineEvent::$events[$i]->getDisplay(); 
  if ($status == 0) 
             echo"<td>published</th></tr>";   
  if ($status == 1) 
             echo"<td>awaiting approval</th></tr>";      
    } 
   }   
 ?> 
 </table> 

 </body> 
</html> 
 
 

The final task in this project is to provide a facility for staff to view event records submitted by members, 
and approve these for publication if suitable.  Open a blank file and add the lines of program code shown in 
the two boxes below.   

 
<? 
   session_start(); 
   include('TimelineEvent.php'); 
   $userWanted=$_SESSION['user']; 
   $approvedRecords = $_REQUEST['approvedRecords'];   
?> 
<html> 
<head> 
  <title> Historical timeline </title> 
  <link rel="Stylesheet" type="text/css" href="styleSheet.css" />   
</head> 
<body> 
<? 
  include('staffMenu.php'); 
  include('TimelineLogin.php'); 



 

263 
 

Chapter 5:  Historical timeline 

<? 
  include('staffMenu.php'); 
  include('TimelineLogin.php'); 
 
  TimelineLogin::loadTimelineUsers(); 
  $name=TimelineLogin::nameOfUser($userWanted); 
  echo"<h3>Staff: ".$name."</h3>"; 
?>  
Records awaiting approval are listed below.<br> 
<form method=post action='staffListArticles.php'> 
<? 
if ($approvedRecords=='YES') 
   echo"<input type='checkbox' name='approvedRecords' value='YES' checked=true>"; 
else 
   echo"<input type='checkbox' name='approvedRecords' value='YES'>"; 
?> 
Also show approved records   
<br><br><input type=submit value='reload'>  
</form> 
</body> 
</html> 
 
 

Save the file as staffListArticles.php and copy it to the server.   

Run the website, log-in as staff and go to the staff page.  Select the 'Approve or edit events' option. The 
staff member's name should be displayed, along with a checkbox and button.  

 
 
 
 
 
 
 
 
 
 
 

Before displaying the events, an additional method should be added to the TimelineCategory class.  This 

will input the ID number for an event category and return the corresponding name, for example: category 4 

of the History of Transport timeline will return the name 'Air'. 

Open the TimelineCategory.php file and add the nameOfCategory( ) method shown below. 

 

 public static function nameOfCategory($categoryWanted,$categoryCount) 
 { 
      $answer="";   
    for ($i=1;$i<=$categoryCount;$i++) 
    {       
  if ($categoryWanted==TimelineCategory::$categories[$i]->symbol) 
  { 
           $answer = TimelineCategory::$categories[$i]->categoryName;   
  } 
    }     
    return $answer; 
  }  
 
 } 
 ?> 



 

264 
 

Web-based programming projects 

Save the TimelineCategory.php file and copy it to the server. 

Return now to the staffListArticles.php file and add the lines of program code shown below.  The program 

begins by setting up the column headings for a table to display event records.  A loop checks all event 

objects and only displays those with a display code value of 1, indicating that they are awaiting staff 

approval.  The contributor's website username is used to obtain their full forename and surname by means 

of the nameOfUser( ) method.  The nameOfCategory( ) method obtains the category title from the symbol 

number. 

Also show approved records      
<br><br><input type=submit value='reload'>  
</form> 

<br><table border=0 cellpadding = 5> 
<? 
   echo"<tr><th class = outline>Timeline"; 
   echo"<th class = outline>Date"; 
   echo"<th class = outline>Category"; 
   echo"<th class = outline>Event"; 
   echo"<th class = outline>Submitted by";  
   echo"<th class = outline>Submission date"; 
   echo"<th class = outline>Status"; 
   $eventCount = TimelineEvent::loadEvents();  
   include('Timeline.php'); 
   $timelineCount=Timeline::loadTimelines(); 
   include('TimelineCategory.php');         
   for ($i=1; $i<=$eventCount; $i++) 
   {    
    $status = TimelineEvent::$events[$i]->getDisplay(); 
    $display=false; 
    if ($status ==1) 
       $display=true; 
    if($display==true) 
    { 
  $timelineID = TimelineEvent::$events[$i]->getTimelineID(); 
  $timelineTitle = Timeline::loadTitleByID($timelineID,$timelineCount); 
  $categoryID = TimelineEvent::$events[$i]->getCategory(); 
  $contributorID = TimelineEvent::$events[$i]->getContributor(); 
  echo"<tr><td>".$timelineTitle; 
  echo"<td>".TimelineEvent::$events[$i]->getStartYear(); 
  $categoryCount = TimelineCategory::loadByTimelineID($timelineID);  
        $categoryName=TimelineCategory::nameOfCategory($categoryID,  
                                                             $categoryCount); 
  echo"<td>".$categoryName; 
  echo"<td width=400>".TimelineEvent::$events[$i]->getEventTitle(); 
  $contributor=TimelineLogin::nameOfUser($contributorID); 
          echo"<td>".$contributor; 
  echo"<td>".TimelineEvent::$events[$i]->getSubmissionDate();   
  if ($status == 0) 
             echo"<td>published";   
  if ($status == 1) 
             echo"<td>awaiting approval";   
          echo"<td><input type=submit value='view'>"; 
    }  
   } 
   ?> 
</table> 

</body> 
</html> 



 

265 
 

Chapter 5:  Historical timeline 

Save the staffListArticles.php file and copy it to the server.  Refresh the staff page.  A list of all event 

records awaiting approval should now be displayed. 

 
 
 
 
 
 
 
 
 
 

Return to the staffListArticles.php file and the add lines of code shown below.  These allow the user to list 

all event records, including those which have already been approved. 

 
   for ($i=1; $i<=$eventCount; $i++) 
   {    
     $status = TimelineEvent::$events[$i]->getDisplay(); 
     $display=false; 
     if ($status ==1) 
        $display=true;  

     if (($approvedRecords=='YES') && ($status ==0)) 
          $display=true; 

    if($display==true) 
    { 
  $timelineID = TimelineEvent::$events[$i]->getTimelineID(); 
 
 

Save the staffListArticles.php file, copy it to the server and again refresh the staff page.  Click the tick box 

to select 'Also show approved records', then click the 'Reload' button.  All event records should now be 

listed.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Each event record has been given a 'view' button which will open a page to display the record.  To operate 

this, we must add a <form> structure to staffListArticles page. 

Return to the staffListArticles.php file.  Locate the start of the if ($display == true) block and insert a line of 

code to open a form. 

  if (($approvedRecords=='YES') && ($status ==0)) 
         $display=true; 
  if($display==true) 
  { 

        echo "<form method=post action = 'staffDisplayArticle.php'>"; 

      $timelineID = TimelineEvent::$events[$i]->getTimelineID(); 



 

266 
 

Web-based programming projects 

Insert a closing block for the form at the end of the if ($display == true) block.  Save staffListArticles.php 

and copy it to the server. 

      if ($status == 1) 
             echo"<td>awaiting approval";   
      echo"<td><input type=submit value='view'>"; 

      $eventID=TimelineEvent::$events[$i]->getEventID(); 
      echo"<input type=hidden name = 'eventID' value=$eventID>"; 
      echo"</form>"; 

    }  
   } 
   ?> 
 </table> 

 

It will also be necessary to add another method to the TimelineEvent class to update the display value of 
the record when an event is approved for display.  Open TimelineEvent.php and add this method. 

 public static function setDisplay($eventID,$display) 
 { 
    include('user.inc');  
  $conn = new mysqli(localhost, $username, $password, $database); 
    if (!$conn) {die("Connection failed: ".mysqli_connect_error()); } 
    $query="UPDATE timelineEvent SET display = '$display' WHERE  
                                                    eventID = '$eventID'"; 
    $result=mysqli_query($conn, $query); 
    mysqli_close($conn);  
  } 

} 
?> 
 

Save the TimelineEvent.php file and copy it to the server. 

We can now move on to produce the new web page to display the event record.  Open a blank file and add 

the lines of program code shown on the next page. 

Save the file as staffDisplayArticle.php and copy it to the server.  Run the staff webpage and select an 

event to display.  The display page should open. 

 

  



 

267 
 

Chapter 5:  Historical timeline 

<?  
  $eventIDwanted=$_REQUEST['eventID']; 
  include('TimelineEvent.php'); 
  $count = TimelineEvent::loadEvents();  
  include('TimelineLogin.php'); 
  TimelineLogin::loadTimelineUsers(); 
?> 
<html> 
<head> 
   <title> Historical timeline </title> 
   <link rel="Stylesheet" type="text/css" href="styleSheet.css" />   
</head> 
<body> 
<? 
  for ($i=1; $i<=$count;$i++) 
  { 
     $eventID=TimelineEvent::$events[$i]->getEventID();  
   if ($eventID==$eventIDwanted) 
   { 
      echo"<form method=post action='staffListArticles.php?edit=YES&eventID="  
                                                                 .$eventID."'>"; 
      $user = TimelineEvent::$events[$i]->getContributor(); 
      $contibutor = TimelineLogin::nameOfUser($user); 
      echo"<p>Contributor: ".$contibutor; 
      echo"<p>Submission date: ".TimelineEvent::$events[$i]->getSubmissionDate(); 
      echo"<p><table class=outline cellpadding = 10>"; 
      echo"<tr><td colspan=2><b>".TimelineEvent::$events[$i]->getEventTitle().  
                                                                "</b></td></tr>"; 
      echo"<tr><td width=500>".TimelineEvent::$events[$i]->getEventText()."</td>"; 
      $image=TimelineEvent::$events[$i]->getImage(); 
        echo"<td><img src='uploads/".$image."' width=500></td></tr>"; 
      echo"</table>"; 
      echo"<center><p>"; 
      $approved = TimelineEvent::$events[$i]->getDisplay(); 
      if ($approved=='0') 
            echo"<input type='checkbox' name='approved' value='YES' checked=true>"; 
        else 
            echo"<input type='checkbox' name='approved' value='YES'>"; 
      echo"Approved for display"; 
      echo"&nbsp;&nbsp;&nbsp;&nbsp;"; 
      echo"<input type=submit value='continue'>"; 
      echo"</center>"; 
      echo"</form>";    
   } 
  } 
?> 
</body> 
</html> 

 

The program loads the set of timelineEvent objects, then uses a loop to check for the object with the 
correct eventID attribute.  The information for this event is then displayed in a table.  Beneath the table is a 
check box which can be ticked or unticked to determine whether or not the record will be displayed.  A 
button then allows the user to return to the staff page. 

The final step in operating the approval system is to update the database table.  Re-open the 

staffListArticles.php file and add lines of program code to do this, as shown below. 

  



 

268 
 

Web-based programming projects 

       session_start(); 
   include('TimelineEvent.php'); 
   $userWanted=$_SESSION['user']; 
   $approvedRecords=$_REQUEST['approvedRecords']; 

   $edit=$_REQUEST['edit']; 
   if ($edit=='YES') 
   { 
      $approved = $_REQUEST['approved']; 
      $eventID = $_REQUEST['eventID']; 
    $display=1; 
    if ($approved =='YES') 
    $display=0; 
    TimelineEvent::setDisplay($eventID,$display); 
   } 

?> 
<html> 

 

Save the staffListArticles.php file and copy it to the server.  Run the staff webpage and select an event to 

display.  Use the tick box on the display page to change the approval status of the event record – either 

from 'not approved' to 'approved', or vice versa. Return to the staff page and check that the new status of 

the record is shown correctly in the table.  

Go to the timeline and check that approved events are displayed, whilst events awaiting approval do not 

appear. 

 

 

 

 

 

 

 

 

 

 

Further development 

The web pages developed above provide the minimum functionality for a working historical timeline.  A full 
system would need additional editing options, for example: adding or removing event categories, or 
allowing authors to edit the timeline event records.   

This project demonstrates the design of a particular staff moderated on-line media system in which the 

published content is contributed by members.  Many other group applications with material contributed by 

members could be developed. For example, web sites might document the activities of a sports club, or 

compile learning resources for students studying a particular course.  Innovative graphical displays may 

provide access to the site content, such as a mind map illustrating a course syllabus with clickable links to 

articles on the various course topics. 



 

269 
 

Chapter 5:  Historical timeline 

Summary of the object structures 

TimelineLogin 

A TimelineLogin object contains the loginID which is set by the database as an auto-number, along with the 
person's name, email address, website user name and password, and a status variable identifying the user 
as member or staff.  Two methods are included which check the input data for valid log-in details.  The 
public method checkPassword( ) calls the private method checkUser( ) to examine each TimelineLogin 
object in turn, then returns a result of 'staff' or 'member' if valid log-in details are found for a user in one of 
these groups.  An addMember( ) method allows new member records to be added to the database, and a 
nameOfUser( ) method allows a member's full name to be found from their web site user name. 

Timeline 

A Timeline object is created for each historical timeline which will be displayed on the website.  Attributes 
specify the timeline title and the year range. Methods are provided to add timeline records to the 
database, and to retrieve records and create a corresponding set of Timeline objects.  A series of get( ) 
methods allow access to the object attributes, such as timeline title, start and finish year. 

TimelineCategory 

Category objects represent the categories by which timeline events can be classified.  The addCategory( ) 
method allows additional category records to be added to the database. A loadByTimelineID( ) method 
allows the set of TimelineCategory objects to be loaded for a particular timeline.     

TimelinePeriod 

A TimelinePeriod object is created for each of the time periods into which the timeline is divided.  
Attributes include the start and finish years for the period, the period name, and the horizontal year scale 
to be used when displaying the period on the timeline display.  A file name specifies the background image 
to be used for the period.  An addPeriod( ) method allows additional period records to be added to the 
database. A loadByTimelineID( ) method allows the set of TimelinePeriod objects to be loaded for a 
particular timeline.  Get( ) methods the provide access to the object attributes.  

TimelineEvent 

A TimelineEvent object is created for each event record which will be displayed on the website. Attributes 

include the date(s) of the event, its title, a text description, and the file name of an image illustrating the 

event.  The user name of the contributor is recorded, along with a display attribute which indicates 

whether the record has been approved for display on the web site.  Methods are provided to add event 

records to the database, and to retrieve records and create a corresponding set of TimelineEvent objects 

for a particular timeline.  A setDisplay( ) method allows the display status for a record to be changed when 

it is approved or rejected for display. 

  



 

270 
 

Web-based programming projects 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-                     private 

+                     public 

underlined     static 


